250 W 57th Street 1350 Broadway 1359 Broadway 1333 Broadway Empire State Building

LL97 Deep Energy Retrofit

Results and Recommendations REV 01 – Updated LL97 Limits


March 12th, 2024

Table of Contents

Executive Summary

- Building Case Studies
 - Energy Modeling
 - ECM Phasing and Packaging
 - Energy and Carbon Emissions Results
 - Financial Analysis and Recommendations
 - Capital Expenditure and 2022 Budget
- Lessons Learned

1333 Broadway Empire State Building

Overview of Case Study

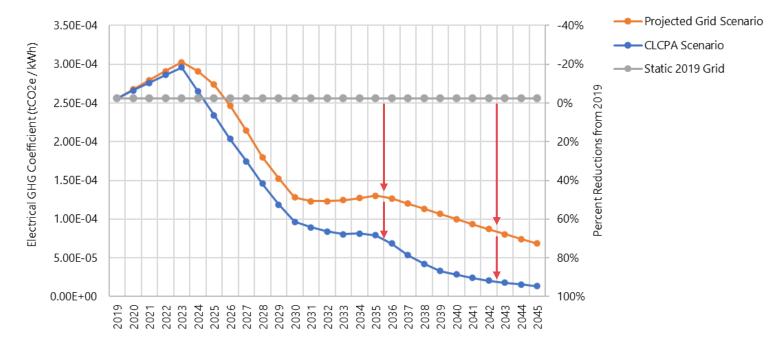
3

Executive Summary

Building Case Study Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget Lessons Learned

ESRT LL97 Deep Energy Retrofit Goals

- Evaluate the technical and economic potential to achieve carbon neutrality
- Define technical and economic needs to meet and exceed State and City targets and plans for 2024, 2030, 2035, 2050
- Evaluate the effects of different grid commitments
- Conduct a thorough technology review via pilots, building tests, energy modeling, site visits and vendor evaluations
- Analyze whole system approach based on energy models, economic assessment and supply side opportunities
- Utilize private know-how, leadership and public funding
- Utilize multi-stakeholder engagement which thoroughly explores the role of tenants to meet targets


Defining Net-Zero Carbon

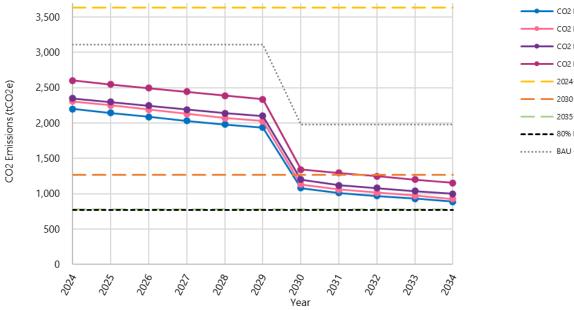
ESRT's working definition of net-zero existing buildings is that by drastically reducing building operational emissions, partnering with a renewably sourced grid aligned with CLCPA, and offsetting residual emissions through clean energy generation and/or RECs through a transparent accounting and reporting process, net annual building operational carbon emissions are equal to zero.

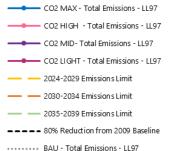
By 2035, the ESRT portfolio will target net-zero carbon through an 80% operational carbon reduction - achieved through a combination of energy efficiency measures and a more renewably sourced grid - and a 20% offset with offsite clean energy generation and RECs.

Grid Projections: CLCPA Target Grid Scenario vs. Projected Grid Scenario

Electrical Grid Decarbonization Projections

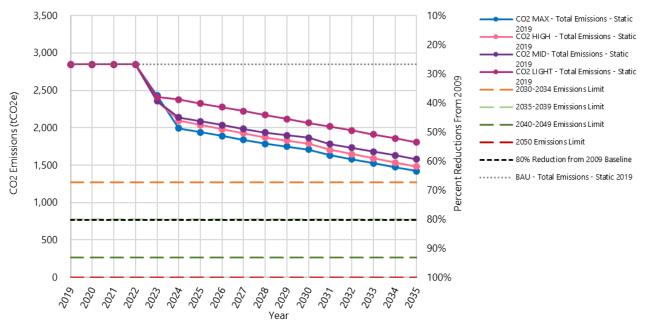
Year


250 W 57th Street

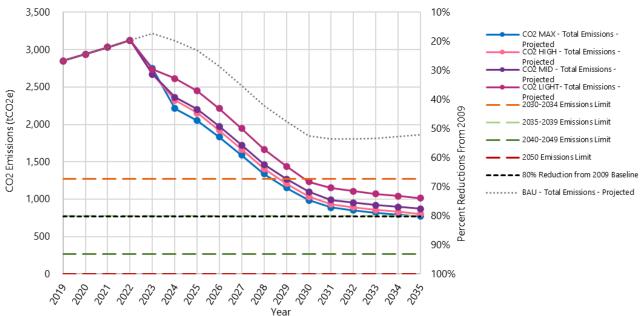

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, LL97 Grid Coefficients

BAU does not achieve 2030 compliance;

CO2 Light achieves 2030 compliance in 2032; CO2 Mid and above packages achieve 2030 compliance on time


Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Static Grid Scenario


No packages would meet 80% reduction from 2009 baseline by 2035; No packages would achieve LL97 compliance

Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Projected Grid Scenario

Only CO2 Max package would meet 80% reduction from 2009 baseline by 2035; CO2 Max achieves 2035 LL97 limit on time, CO2 High package achieves 2035 LL97 limit by 2036

Total CO2 Emissions vs. Year - Projected Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, CLCPA Grid Scenario

All packages would meet 80% reduction from 2009 baseline by 2035; All packages achieve 2035 LL97 compliance

> 3,500 10% 20% 3,000 CO2 MAX - Total Emissions -30% CLCPA From 2009 CO2 HIGH - Total Emissions -2,500 CO2 Emissions (tCO2e) CLCPA 40% CO2 MID - Total Emissions -CLCPA 2,000 CO2 LIGHT - Total Emissions -50% Percent Reductions CLCPA 2030-2034 Emissions Limit ^{(a}*****<u>**</u>***** 60% 1,500 2035-2039 Emissions Limit 2040-2049 Emissions Limit 70% 1,000 2050 Emissions Limit 80% 80% Reduction from 2009 Baseline 500 90% 0 100% 202 20° 20° 20° 20° 20° 20° 20° 20° 20° 20° Year

Total CO2 Emissions vs. Year - CLCPA Target Grid Scenario

Percent Carbon Emissions Reductions - All Grid Scenarios

STATIC GRID SCENARIO

	2015 2050	2015 2055	2005 2050	<u> 2005 2055</u>
CO2 MAX	-40.0%	-50.1%	-55.6%	-63.0%
CO2 HIGH	-37.2%	-48.0%	-53.5%	-61.5%
CO2 MID	-34.5%	-44.5%	-51.5%	-58.9%
CO2 LIGHT	-27.4%	-36.5%	-46.3%	-53.0%

2019 - 2030 2019 - 2035 2009 - 2030 2009 - 2035

No packages would meet 80% reduction from 2009 baseline by 2035;

No packages would achieve LL97 compliance

PROJECTED GRID SCENARIO

_	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-65.4%	-72.9%	-74.4%	-80.0%
CO2 HIGH	-63.7%	-71.8%	-73.1%	-79.1%
CO2 MID	-61.5%	-69.4%	-71.5%	-77.3%
CO2 LIGHT	-56.7%	-64.4%	-68.0%	-73.6%

Only CO2 Max package would meet 80% reduction from 2009 baseline by 2035;

CO2 Max achieves 2035 LL97 limit on time, CO2 High package achieves 2035 LL97 limit by 2036

CLCPA TARGET GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-71.7%	-82.2%	-79.0%	-86.8%
CO2 HIGH	-70.2%	-81.4%	-77.9%	-86.2%
CO2 MID	-68.1%	-79.4%	-76.4%	-84.8%
CO2 LIGHT	-64.0%	-75.7%	-73.3%	-82.0%

All packages would meet 80% reduction from 2009 baseline by 2035;

All packages achieve 2035 LL97 compliance

250 W 57th Street Case Study

Energy Modeling

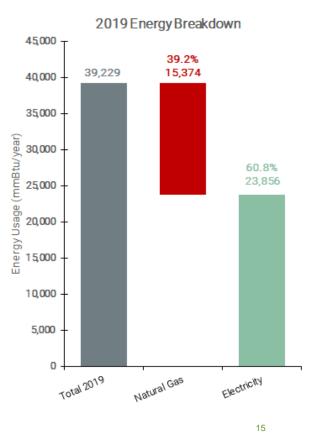
ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

250 W 57th Street - Current Building Systems

Major equipment is due for replacement in the next <10 years

- Central chiller plant & cooling towers
 - (2) 325-ton water-cooled chillers (650 tons total) installed in 1999
 - (1) cooling tower, (2) cells (1,100 tons total) installed in 2015
- Gas-to-steam boiler plant
 - ▶ (2) low pressure steam boilers installed in 1996 & 2003
 - Perimeter steam radiators
 - Electric unit heaters (inefficient design) at tenant MERs for ventilation heating loads

2019 Energy Breakdown by Utility

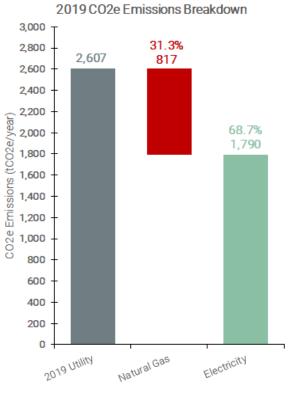

Natural gas consumption used for heating makes up a significant portion (39.2%) of energy usage

Electricity

- ▶ 60.8% of energy usage
- ▶ 68.7% of CO2e emissions

Natural Gas

- ▶ 39.2% of energy usage
- ▶ 31.3% of CO2e emissions


REALTY TRUST

2019 CO2e Emissions Breakdown by Utility

Natural gas has slightly lower associated emissions than electricity

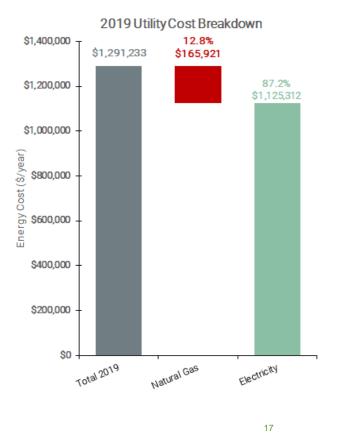
Electricity - 256.0 tCO2e/GWh

Natural Gas - 181.2 tCO2e/GWh (LL97)

FMPIR

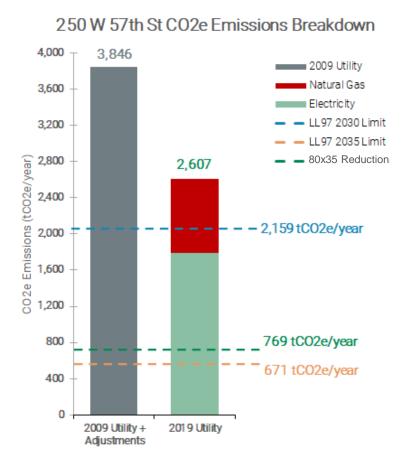
REALTY TRUST

2019 Operational Cost Breakdown by Utility


Natural gas is cheaper than electricity & therefore makes up a smaller portion (12.8%) of utility costs

Electricity

- ▶ 87.2% of operational costs
- ► 60.8% of energy usage

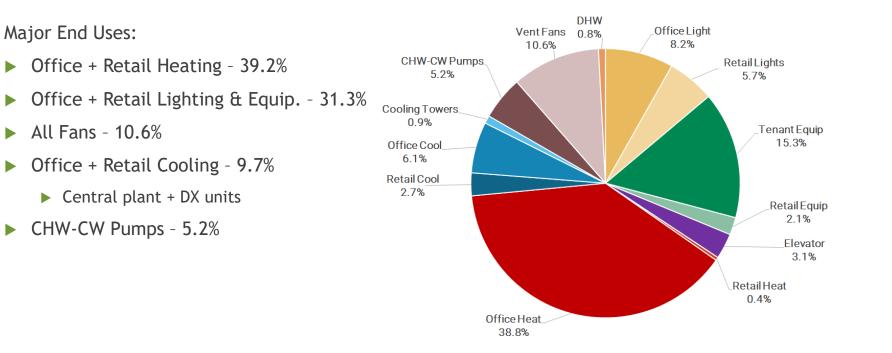

Natural Gas

- ▶ 12.8% of operational costs
- ▶ 39.2% of energy usage

ALTY TRUST

250 W 57th Street Current Status for LL97 and 80x35 Metrics

Key Takeaways:


- Building meets LL97 2024 limit of 4,144 tCO2e/year
- 17.2% emissions reduction is required to meet LL97 2030 target
- 70.5% emissions reduction is required to meet LL97 2035 target
 - Building + grid improvements

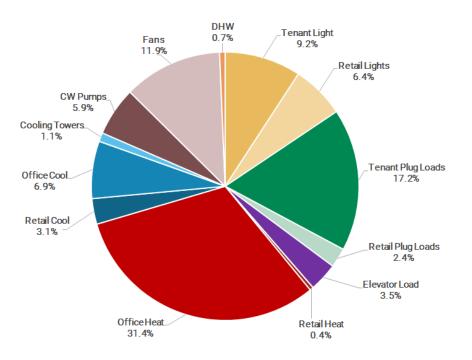
32% CO2e reduction from 2009 to 2019

- ▶ 36% due to electrical grid improvement
- 59% due to switch from fuel oil #2 to natural gas

250 W 57th Street Energy Model: 2019 Energy Breakdown by End-Use

Office and retail heating accounts for 39.2% of the total 2019 energy usage

REALTY TRUST


19

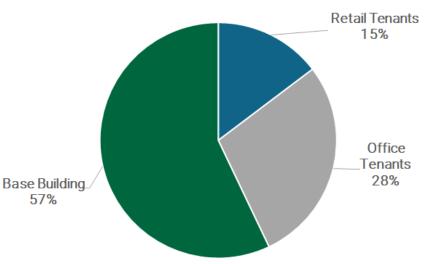
250 W 57th Street Energy Model: 2019 <u>CO2e Emissions</u> Breakdown by End-Use

Office and retail lighting/equipment accounts for 35.2% of the total 2019 CO2e emissions

Major End Uses:

- Office + Retail Lighting & Equip. 35.2%
- Office + Retail Heating 31.8%
- All Fans 11.9%
- Office + Retail Cooling 11.1%
 - Central plant + DX units
- CHW-CW Pumps 5.9%

250 Energy Model: 2019 CO2e Emissions Breakdown by User


Office and retail tenants account for only ~43% of total 2019 CO2e emissions

Base Building includes:

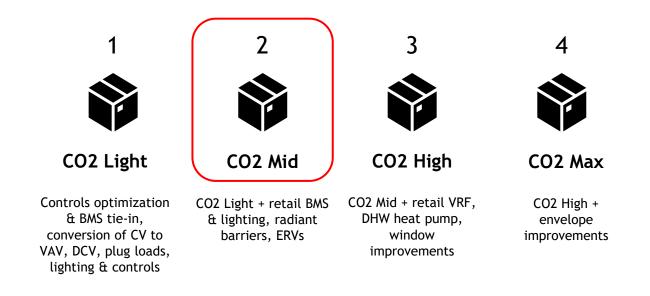
- All gas-to-steam heating
- Central cooling plant equipment
- All office tenant AHUs
- Elevators
- Lobby HVAC units
- BOH lighting and equipment

Majority of retail space is TJ Maxx which utilizes VRF systems

Space Type	Square F	ootage	Energy Intensity	Carbon Intensity
Space Type	SF	%	(kBtu/SF/year)	(lbs/SF/year)
Retail Tenants	70,650	17%	71.6	11.8
Office Tenants	353,757	83%	27.6	4.5

Ownership of CO2e Emissions

250 W 57th Street Case Study


Energy Modeling ECM Phasing and Packaging

Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

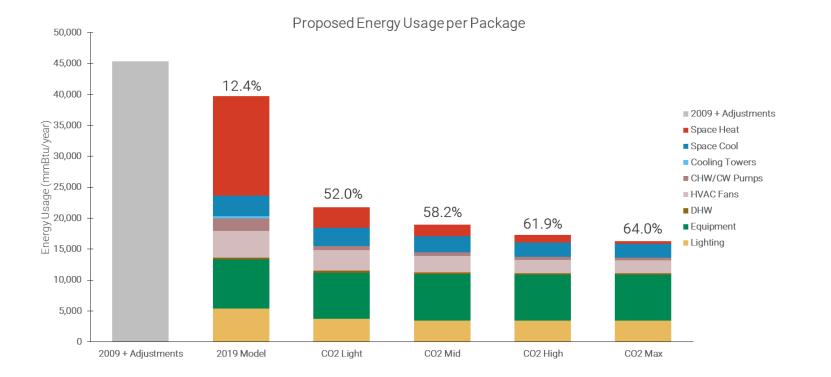
ECM Packages

Four packages of ECMs were developed to optimize NPV and CO2 reductions

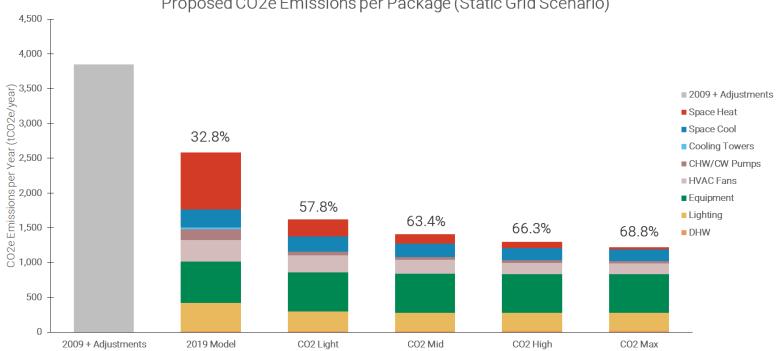
All packages: 300-ton heat pump & HHW riser in 2023; 500-ton (additional) heat pump in 2030

ECM Phases & Implementation Timeline: CO2 Mid

ENERGY CONSERVATION MEASURES (ECMS)			IMPLEMENTATION TIMELINE																
Phase	Tag	Short Name	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Phase 1	CO001	DDC VAV Boxes and Electronic Radiator Valves	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 1	CO007	Tie-In VAV Diffuser Systems to BMS + Electronic Radiator Valves	100%	100%															100%
Phase 1	CO003	Single-Zone Variable Flow, Variable Temperature AHUs + Electronic Radiator Valves	100%	100%															100%
Phase 1	CO004	Chiller Plant Metering & Sequence Optimization	100%	100%															100%
Phase 1	CO005	Retail BMS Upgrades	100%	100%															100%
Phase 1	SS001	Reduce Steam Pressure and Steam Cycling	100%	100%															100%
Phase 1	SS002	Radiator Trap Audit & Replacement	100%	100%															100%
Phase 2	AS001	Toilet Exhaust Energy Recovery Ventilator		100%															100%
Phase 2	EN001	Mitigate Lobby Infiltration		100%															100%
Phase 2	LT002	Common Area Lighting Upgrades		100%															100%
Phase 2	SS003	Install Radiant Barriers		100%															100%
Phase 3	AS006	Convert VAV Diffuser Systems to VAV Systems at Tenant Lease Roll		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	AS004	Convert Constant Volume AHUs to VAV Systems at Tenant Lease Roll		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	CO006	Outside Air Flow Control & Demand Controlled Ventilation		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	AS005	Energy Recovery Ventilators for Office Tenant Floors		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	TL001	Plug Load Control		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	TL002	Tenant IT Cooling		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	LT003	Day Lighting & Vacancy Control		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	LT004	Efficient Light Fixtures & Lighting Layout		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 3	LT005	Retail Lighting Improvements		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%	100%
Phase 4	EL001	Immediately Install 300-ton Air-Water Heat Pumps and Add Complete Plant Capacity at Chiller End-Of-Life		38%	38%	38%	38%	38%	38%	38%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 4	EL002	Immediately Install Heating Hot Water Riser & Branch Taps on Tenant Floors & Connect to Boiler System		100%	100%	100%	100%	100%	100%	100%	100%	100%							100%
Phase 4	EL003	Immediately Begin Install of VAV Reheat Coils on Tenant Office Floors	0%	0%	7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%


250 W 57th Street Case Study

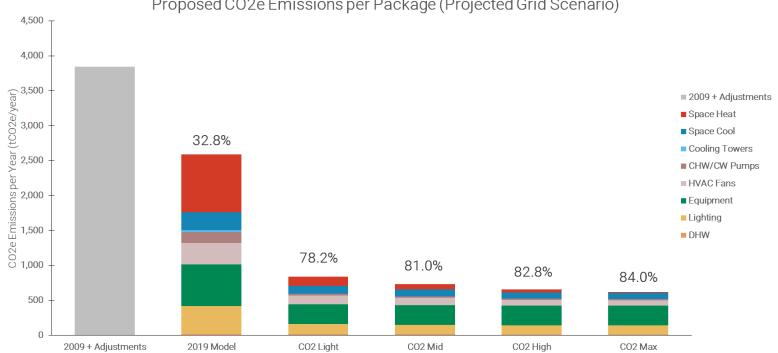
Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget


ECM Package Comparison - Energy

Packages range from 52.0% to 64.0% reduction in total energy from 2009 + Adjustments benchmark year

Projected CO2 Emissions - Static 2019 Grid Scenario

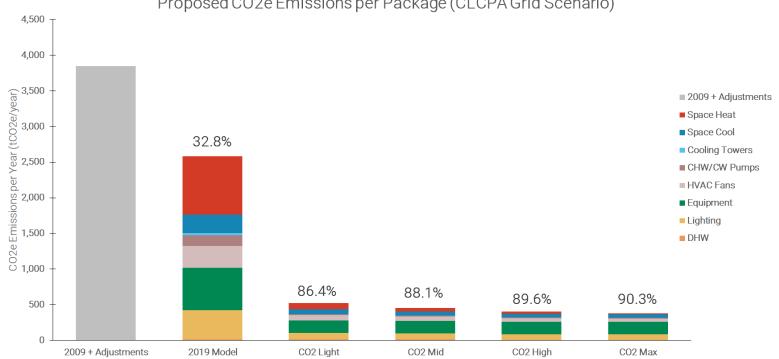
Packages range from 57.8% to 68.8% reduction in total CO2e emissions from 2009 + Adjustments benchmark year



Proposed CO2e Emissions per Package (Static Grid Scenario)

Projected CO2 Emissions - Projected Grid Scenario

Packages range from 78.2% to 84.0% reduction in total CO2e emissions from 2009 + Adjustments benchmark year

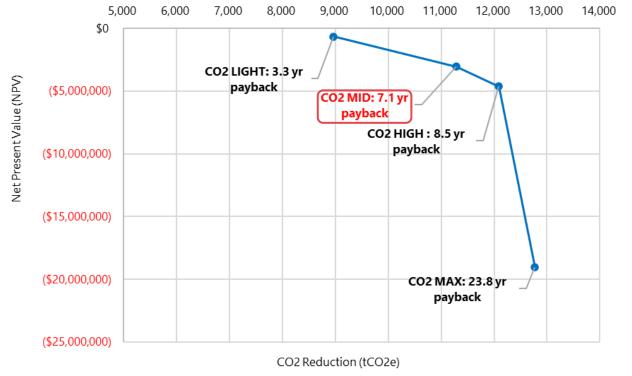


Proposed CO2e Emissions per Package (Projected Grid Scenario)

Projected CO2 Emissions - CLCPA Grid Scenario

Packages range from 86.4% to 90.3% reduction in total CO2e emissions from 2009 + Adjustments benchmark year

Proposed CO2e Emissions per Package (CLCPA Grid Scenario)



250 W 57th Street Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

NPV, CO2 Reductions and Simple Payback for all Packages

NPV vs. CO2 Reduction over 20 Year Period of Packages (CLCPA Target Grid Scenario)

NPV calculated with 6% discount rate

LL97 Annual Fines for All Packages

With BAU scenario, 250 would begin seeing fines in 2030 with the static grid scenario Implementation of CO2 Mid, High or Max packages would avoid all fines in the CLCPA grid scenario

CLCPA Grid Scenario					Projected G	rid Scenario		Static Grid Scenario					
Packages	Total Fine from 2024- 2029	Total Fine	Annual Fine Starting As Soon As 2035*	Avoidance	from 2024-	Total Fine	Annual Fine Starting As Soon As 2035*	Avoidance	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*		
2019 Baseline	\$0	\$0	\$211,654	-	\$0	\$0	\$318,938	-	\$0	\$186,480	\$583,375	-	
CO2 Light	\$0	\$0	\$5,631	\$206,023	\$0	\$0	\$91,881	\$227,057	\$0	\$0	\$304,473	\$278,902	
CO2 Mid	\$0	\$0	\$0	\$211,654	\$0	\$0	\$53,971	\$264,967	\$0	\$0	\$243,451	\$339,924	
CO2 High	\$0	\$0	\$0	\$211,654	\$0	\$0	\$35,677	\$283,261	\$0	\$0	\$216,938	\$366,437	
CO2 Max	\$0	\$0	\$0	\$211,654	\$0	\$0	\$26,755	\$292,182	\$0	\$0	\$201,362	\$382,013	

*The 2035 GHG emissions limit has not yet been defined and calculations are based on average long-term LL97 80% reduction limits.

Recommended Package - CO2 Mid

	CO2 Light	CO2 Mid	CO2 High	CO2 Max
NPV TOTALS	(\$656,692)	(\$3,040,143)	(\$4,615,146)	(\$19,053,980)
Base Capital Cost	(\$24,862,388)	(\$29,341,242)	(\$31,974,432)	(\$44,329,663)
Total Incremental Capital Cost*	(\$6,490,898)	(\$10,969,752)	(\$13,602,942)	(\$34,527,580)
Annual Energy Cost Savings	\$698,021	\$920,288	\$1,038,002	\$1,143,297
Annual Repairs & Maintenance Savings	\$174,980	\$174,980	\$174,980	\$172,380
Incentives	\$3,647,210	\$3,165,199	\$3,314,134	\$3,278,968
Simple Payback	3.26	7.13	8.48	23.75

CO2 Light Reduction - Controls optimization & BMS tie-in, conversion of CV to VAV, DCV, plug loads, lighting & controls

CO2 Mid Reduction - CO2 Light + retail BMS & lighting, radiant barriers, ERVs

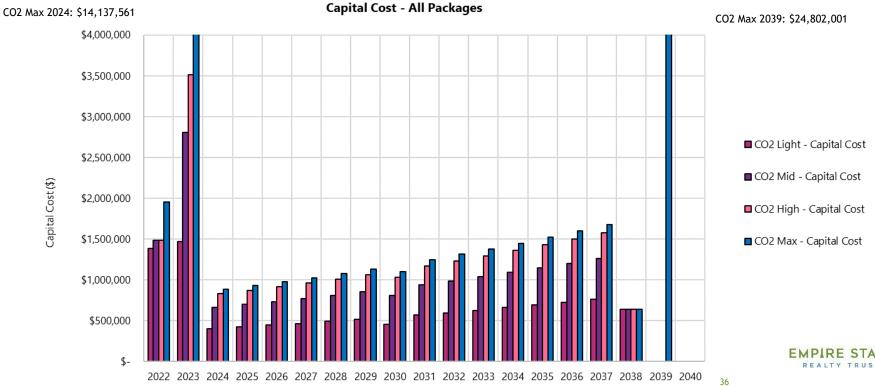
CO2 High Reduction - CO2 Mid + retail VRF, DHW heat pump, window improvements

CO2 Max Reduction – CO2 High + envelope improvements

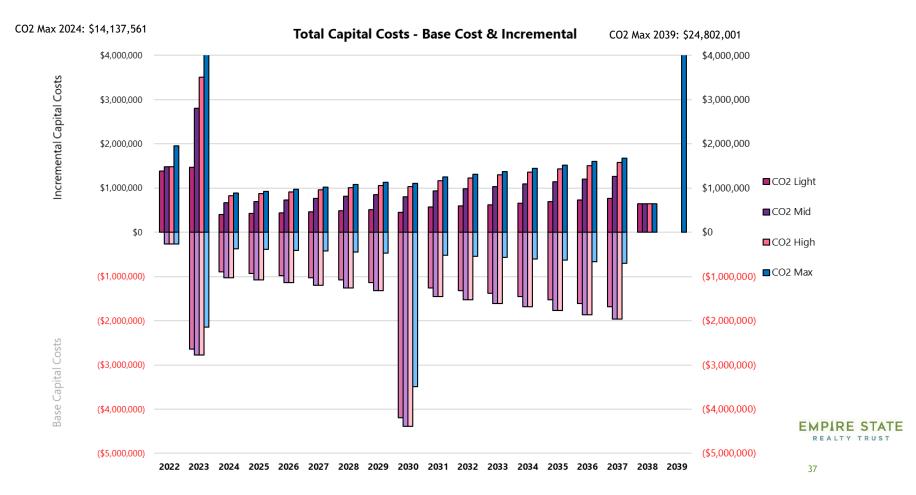
REALTY TRUST

Recommended Package - CO2 Mid

- Near term installation of a 300-ton heat pump increases the cooling plant capacity to address issues with existing capacity and resiliency that will persist even after the central chiller plant is optimized.
 - There are several 3-way valves in the building, poor/old AHU controls, and over-pumping of the CHW system that are contributing to low delta T on the chilled water system, which can masquerade as insufficient plant capacity. This will be remedied through the chiller plant optimization measure
 - > There are several floors that are currently vacant which will increase the cooling load once occupied
 - There are several existing air-cooled units which will increase the cooling load once replaced and tied into the chilled water system
- Improves the resiliency of the cooling plant and puts it on par with existing resiliency at 1350 and other properties
 - Currently there are (2) chillers sized at < 50% of the existing building load. If one fails, there is no way to provide cooling to a majority of the building</p>
 - Adding 300 tons of heat pump capacity increases the cooling plant capacity by 46%. If one of the existing 325 ton chillers fails, the plant will be able to meet ~ 68% of the peak cooling load.
- Eliminates need for refrigeration engineer for chilled-water operation overnight if tenants request cooling during after hours
- Eliminates the need for expensive hybrid DX units and duplicative electrical distribution to service tenants requiring after hours cooling
- New heating hot water system may be tied into existing boilers via a steam-to-hot water heat exchanger to provide supplemental heating and added resiliency during extreme weather events
- Acoustical mitigation is included for heat pumps installed on the roof


250 W 57th Street Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget



Annual Capital Cost per Package

CO2 Mid requires large capital expenditure in 2023, but heat pump project has an effective negative cost in 2030 (at time of chiller replacement) compared to planned cost of \$4M for chiller replacement in kind

Annual Incremental Capital Cost vs. Base Cost per Package

250 W 57th Street Next Steps - 2022 Projects

The recommended 2022 measures are focused on control measures that have a short payback (~3.2 yrs) & will enable further energy reduction

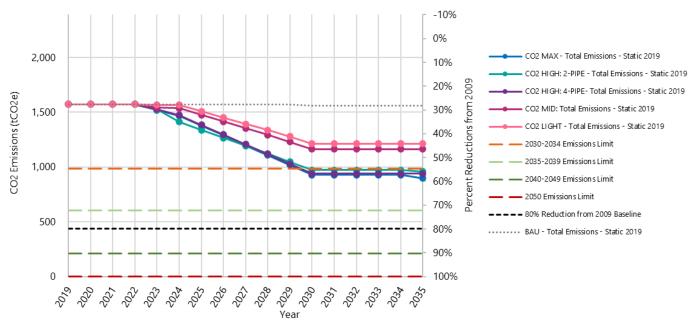
Project	2022 Total Cost	Anticipated Incentives (\$)	Total 2022 Cost w/ Incentives (\$)	Energy Cost Savings
DDC VAV Boxes and Electronic Radiator Valves	\$300,542	\$132,167	\$168,375	\$63,312
Tie-In VAV Diffuser Systems to BMS + Electronic Radiator Valves	\$101,288	\$30,693	\$70,595	\$5,390
Single-Zone Variable Flow, Variable Temperature AHUs + Electronic Radiator Valves	\$729,498	\$221,060	\$508,438	\$50,967
Chiller Plant Metering & Sequence Optimization	\$220,000	\$181,807	\$38,193	\$71,065
Retail BMS Upgrades	\$99,000	\$90,000	\$9,000	\$39,303
Reduce Steam Pressure and Steam Cycling	\$16,500	\$15,000	\$1,500	\$4,860
Radiator Trap Audit & Replacement	Included in Maintenance Budget	-	-	\$7,841
Total	\$1,466,828	\$670,727	\$796,101	\$242,738

1350 Broadway

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, LL97 Grid Coefficients

BAU does not achieve 2030 LL97 compliance;

CO2 Light and above packages achieve 2030 LL97 compliance


-10% 0% 2,000 CO2 MAX - Total Emissions - Static 2019 10% CO2 HIGH: 2-PIPE - Total Emissions - Static 2019 2009 20% CO2 HIGH: 4-PIPE- Total Emissions - Static 2019 CO2 Emissions (tCO2e) from ; 30% CO2 MID: Total Emissions - Static 2019 1,500 CO2 LIGHT - Total Emissions - Static 2019 Reductions 40% 2030-2034 Emissions Limit 50% 2035-2039 Emissions Limit 1,000 2040-2049 Emissions Limit 60% Percent 2050 Emissions Limit 70% 80% Reduction from 2009 Baseline 500 80% ····· BAU - Total Emissions - Static 2019 90% 100% 0 505 A 202 202 5030 ²037 333 333 <030 503 2 202 202 <03 505 202 Year

Total CO2 Emissions vs. Year - LL97 Grid Scenario

EMPIRE STATE

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Static Grid Scenario

No packages would meet 80% reduction from 2009 baseline by 2035; CO2 High & above packages would achieve 2030 LL97 compliance

Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

EMPIRE STATE

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Projected Grid Scenario

No packages would meet 80% reduction from 2009 baseline by 2035; Only CO2 High & above packages achieve 2035 LL97 compliance

> -10% 0% 2,000 10% Projected ^Dercent Reductions from 2009 20% CO2 Emissions (tCO2e) Projected 30% 1,500 40% 50% 1,000 •••••• 60% 70% 500 80% 90% 100% Year

Total CO2 Emissions vs. Year - Projected Grid Scenario

CO2 MAX - Total Emissions - Projected CO2 HIGH: 2-PIPE - Total Emissions -CO2 HIGH: 4-PIPE - Total Emissions -CO2 MID: Total Emissions - Projected CO2 LIGHT- Total Emissions - Projected 2030-2034 Emissions Limit 2035-2039 Emissions Limit 2040-2049 Emissions Limit 2050 Emissions Limit 80% Reduction from 2009 Baseline

> EMPIRE STATE REALTY TRUST

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, CLCPA Grid Scenario

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035; CO2 Light and above packages meet 2035 LL97 compliance

-10% 0% 2,000 10% CO2 MAX - Total Emissions - CLCPA 20% CO2 HIGH: 2-PIPE - Total Emissions - CLCPA CO2 Emissions (tCO2e) 2009 O2 HIGH: 4-PIPE - Total Emissions - CLCPA 30% 1,500 from CO2 MID: Total Emissions - CLCPA 40% CO2 LIGHT - Total Emissions - CLCPA ctions 50% 2030-2034 Emissions Limit 1,000 Redu 2035-2039 Emissions Limit 60% 2040-2049 Emissions Limit cent 70% 2050 Emissions Limit 500 Per 80% Reduction from 2009 Baseline 80% ····· BAU - Total Emissions - CLCPA 90% 0 100% 2019 2028 20²⁰ 20³⁰ 20³¹ 20³¹ 20³¹ 20³¹ 2020 2021 2022 2023 2024 2025 2026 2021 Year

Total CO2 Emissions vs. Year - CLCPA Target Grid Scenario

EMPIRE STATE

Percent Carbon Emissions Reductions - <u>All Grid Scenarios</u>

STATIC GRID SCENARIO

_	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-40.9%	-42.8%	-57.3%	-58.7%
CO2 HIGH 2 PIPE	-37.9%	-38.9%	-55.1%	-55.8%
CO2 HIGH 4 PIPE	-40.2%	-40.2%	-56.7%	-56.7%
CO2 MID	-25.6%	-25.6%	-46.2%	-46.2%
CO2 LIGHT	-22.3%	-22.3%	-43.8%	-43.8%

PROJECTED GRID SCENARIO

_	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-70.2%	-70.7%	-78.4%	-78.8%
CO2 HIGH 2 PIPE	-67.1%	-67.1%	-76.2%	-76.2%
CO2 HIGH 4 PIPE	-69.8%	-69.3%	-78.2%	-77.8%
CO2 MID	-57.1%	-56.6%	-69.0%	-68.6%
CO2 LIGHT	-54.6%	-54.1%	-67.2%	-66.8%

CLCPA TARGET GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-77.4%	-82.0%	-83.6%	-87.0%
CO2 HIGH 2 PIPE	-74.2%	-78.5%	-81.4%	-84.5%
CO2 HIGH 4 PIPE	-77.1%	-81.2%	-83.4%	-86.4%
CO2 MID	-64.9%	-69.2%	-74.6%	-77.7%
CO2 LIGHT	-62.6%	-67.0%	-72.9%	-76.1%

No packages would meet 80% reduction from 2009 baseline by 2035; CO2 High & above packages would achieve 2030 LL97 compliance

No packages would meet 80% reduction from 2009 baseline by 2035; Only CO2 High & above packages achieve 2035 LL97 compliance

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035;

CO2 Light and above packages meet 2035 LL97 compliance

1350 Broadway Case Study

Energy Modeling

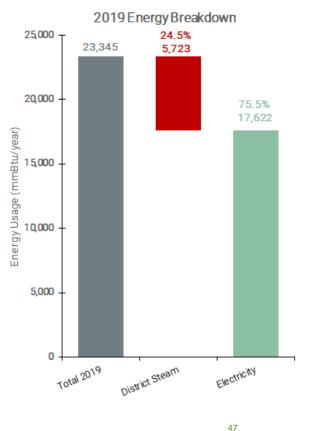
ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

1350 Broadway - Current Building Systems

- Cooling
 - ▶ Two (2) 500 ton electric centrifugal chillers (converted from steam in 2013)
- Tenant level AHUs
 - Approximately 90 tenant spaces
 - Approximately 120 tenant AHUs
- Air Distribution
 - 50% VAV diffuser/VAV box
 - ▶ 50% constant volume (CV)
- Heating
 - District steam
 - Perimeter radiators
 - Electric duct heaters at tenant AHUs for ventilation heating loads (electric resistanceinefficient design)
- BMS
 - Not unified across building, many standalone systems
- Efficiency Rating: A | 85
 - High number of small thermal zones due to segmentation of floor plates results in more tailored airflow
 - Relatively new chillers operate more efficiently at part load

46

2019 Energy Breakdown by Utility


District steam used for heating makes up about a quarter of energy usage

Electricity

- 75.5% of energy usage
- ▶ 83.7% of CO2e emissions

District Steam

- 24.5% of energy usage
- ▶ 16.3% of CO2e emissions

2019 CO2e Emissions Breakdown by Utility

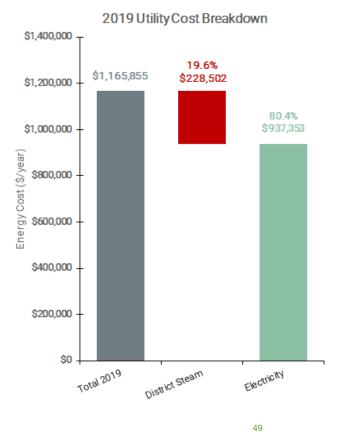
District steam has lower associated emissions than natural gas & electricity

Electricity - 256.0 tCO2e/GWh

District Steam - 153.3 tCO2e/GWh (LL97)

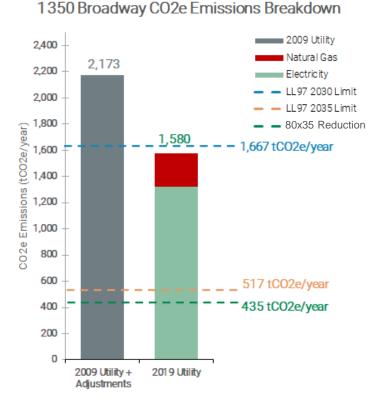
ATE

2019 Operational Cost Breakdown by Utility


District steam is more expensive than natural gas, but cheaper than electricity

Electricity

- ▶ 80.4% of operational costs
- ► 75.5% of energy usage


District Steam

- ▶ 19.6% of operational costs
- > 24.5% of energy usage

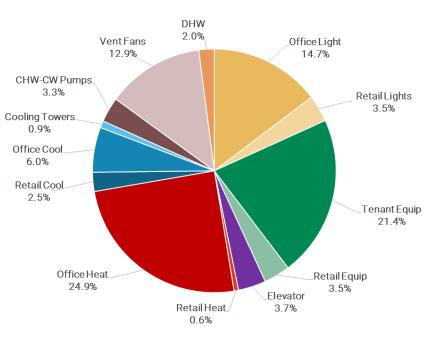
REALTY TRUST

1350 Broadway Current Status for LL97 and 80x35 Metrics

Key Takeaways:

- Building meets 2024 limit of 3,153 tCO2e/year
- Building meets 2030 limit of 1,667 tCO2e/year
- 67.2% emissions reduction is required to meet LL97 2035 target
 - Building + grid improvements

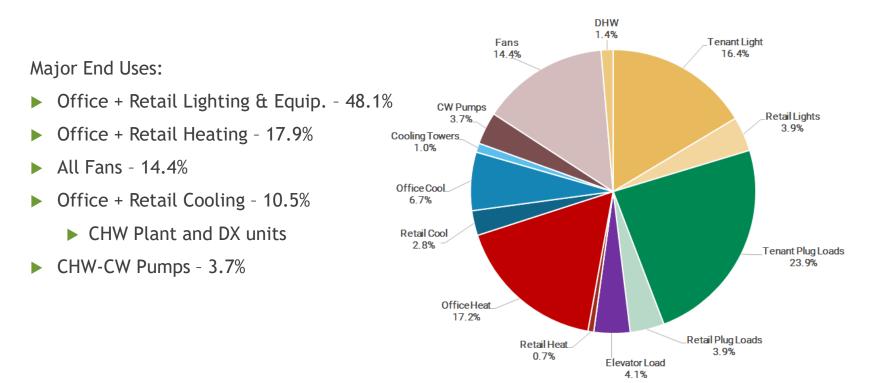
27% CO2e reduction from 2009 to 2019


- ► 44% due to electrical grid improvements
- 56% due to switch from steam to electric chillers

1350 Broadway Energy Model: 2019 Energy Breakdown by End-Use

Office and retail lighting/equipment accounts for 43.1% of the total 2019 energy usage

Major End Uses:


- Office + Retail Lighting & Equip. 43.1%
- Office + Retail Heating 25.5%
- All Fans 12.9%
- Office + Retail Cooling 9.4%
 - ► CHW Plant and DX units
- CHW-CW Pumps 3.3%

51

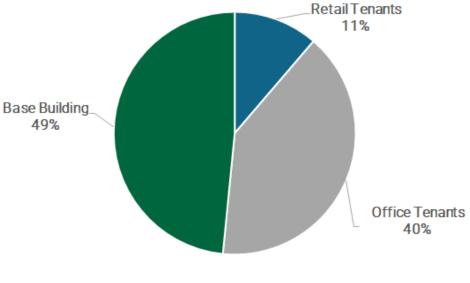
1350 Broadway Energy Model: 2019 CO2e Emissions Breakdown by End-Use

Office and retail lighting/equipment accounts for 48.1% of the total 2019 CO2e emissions

EMPIRE STATE

1350 Energy Model: 2019 CO2e Emissions Breakdown by User

Office and retail tenants account for ~51% of total 2019 CO2e emissions


Base Building includes:

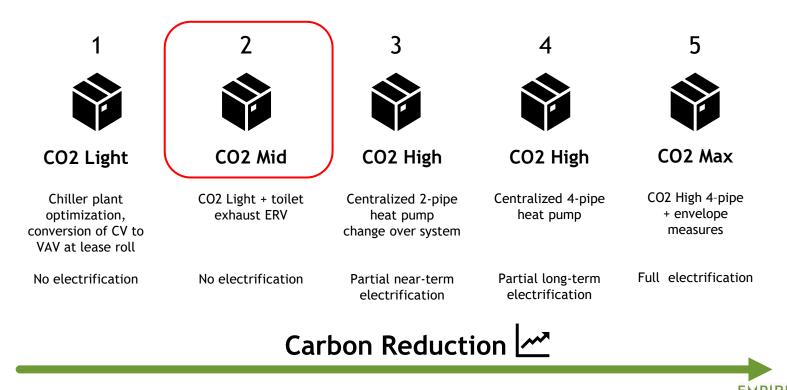
- All district steam heating
- Central cooling plant equipment
- All office tenant AHUs
- Elevators
- Lobby HVAC units
- BOH lighting and equipment

Duane Reade operates 24/7

Santander Bank high energy user

Cooco Tupo	Square	Footage	Energy Intensity	Carbon Intensity	
Space Type	SF %		(kBtu/SF/year)	(lbs/SF/year)	
Retail Tenants	23,673	7%	100.0	16.5	
Office Tenants	293,685	93%	28.7	4.7	

Ownership of CO2e Emissions


1350 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

ECM Packages

Five packages of ECMs developed to optimize NPV and CO2 reductions & test various HVAC systems

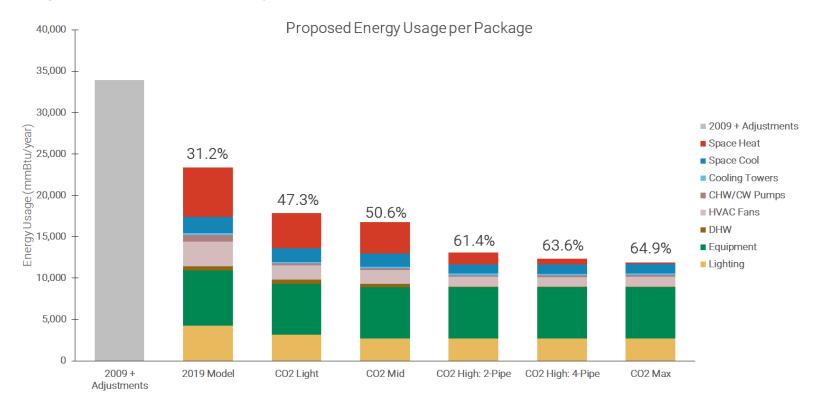
LTY TRUST

4-Pipe vs 2-Pipe Electrification

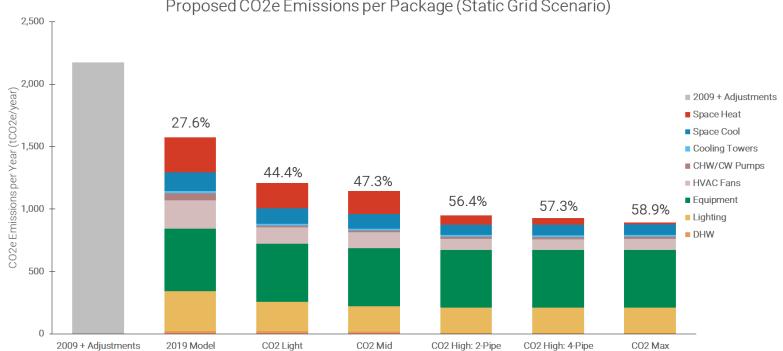
- 2-pipe change-over system
 - Heat pump to be connected directly to CHWS/R loop. During heating season, heat pump injects heat into the CHWS/R loop, using the AHU coil to temper ventilation air and supplement perimeter steam heating load.
- 4-pipe separate heating and cooling loops
 - Installation of HHWS/R riser and additional distribution piping. During heating season, heat pump provides full heating load for perimeter losses and ventilation air. As tenant lease roll dictates, tenant spaces will be converted to full electric heating via the heat pump.

ECM Phases & Implementation Timeline: CO2 Mid

ENER	GY CONSE	RVATION MEASURES (ECMS)				IMPLEM	IENTATION T	IMELINE			
Phase	Тад	Short Name	2022	2023	2024	2025	2026	2027	2028	2029	2030
Phase 1	CO001	BMS Backbone	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 1	CO002	DDC VAV Boxes and Electronic Radiator Valves	100%	100%							
Phase 1	CO003	Optimization of VAV Diffuser Systems + Electronic Radiator Valves	100%	100%							
Phase 1	CO005	Chiller Plant Optimization	100%	100%							
Phase 1	CO006	Control of Pump DP	100%	100%							
Phase 1	SS001	Reduce Steam Pressure and Steam Cycling	100%	100%							
Phase 1	SS002	Radiator Trap Audit & Replacements	100%	100%							
Phase 1	AS001	Toilet Exhaust Energy Recovery Ventilator	100%	100%							
Phase 2	DW001	Low Flow Fixtures		100%							
Phase 3	SS003	Radiant Barrier		0%	17%	33%	50%	67%	83%	100%	100%
Phase 3	EN001	Mitigate Lobby Infiltration			17%	33%	50%	67%	83%	100%	100%
Phase 3	AS003	Retrofit VAV Diffuser Systems to VAV Systems at Tenant Lease Roll			17%	33%	50%	67%	83%	100%	100%
Phase 3	AS004	Retrofit Constant Volume AHUs to VAV Systems at Tenant Lease Roll			17%	33%	50%	67%	83%	100%	100%
Phase 3	CO008	Outside Air Flow Control & Demand Controlled Ventilation			17%	33%	50%	67%	83%	100%	100%
Phase 3	TL001	Plug Load Control			17%	33%	50%	67%	83%	100%	100%
Phase 3	LT001	Efficient Light Fixtures & Layout			17%	33%	50%	67%	83%	100%	100%
Phase 3	LT002	Day Lighting & Vacancy Control			17%	33%	50%	67%	83%	100%	100%
Phase 3	LT003	Retail Tenant Lighting			17%	33%	50%	67%	83%	100%	100%


1350 Broadway Case Study

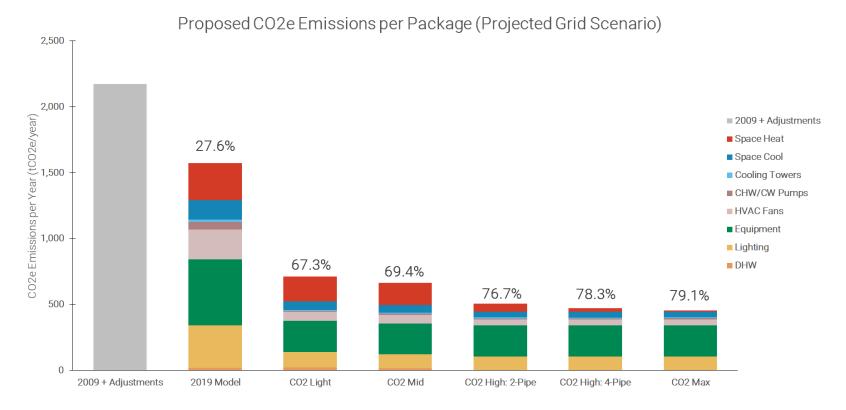
Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget


ECM Package Comparison - Energy

Packages range from 47.3% to 64.9% reduction in total energy from 2009 + Adjustments benchmark year

Projected CO2 Emissions - Static 2019 Grid Scenario

Packages range from 44.4% to 58.9% reduction in total CO2e emissions from 2009 + Adjustments benchmark year



Proposed CO2e Emissions per Package (Static Grid Scenario)

Projected CO2 Emissions - Projected Grid Scenario

Packages range from 67.3% to 79.1% reduction in total CO2e emissions from 2009 + Adjustments benchmark year

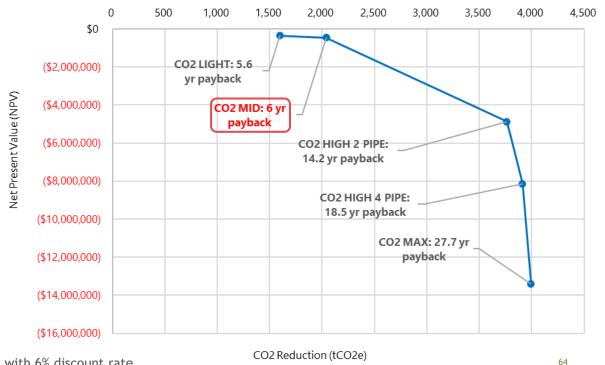
61

EMPIRE STAT

Projected CO2 Emissions - CLCPA Grid Scenario

Packages range from 76.5% to 87.3% reduction in total CO2e emissions from 2009 + Adjustments benchmark year

Proposed CO2e Emissions per Package (CLCPA Grid Scenario)


1350 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

NPV, CO2 Reductions and Simple Payback for all Packages

CO2 Mid package would meet long term LL97 limits and pays back in 5.9 years CO2 High packages offer nearly twice the carbon savings but at higher cost

NPV vs. CO2 Reduction over 15 Year Period of Packages (CLCPA Target Grid Scenario)

NPV calculated with 6% discount rate

EMPIRE STATE

REALTY TRUST

LL97 Annual Fines for all Packages

With BAU consumption, 1350 would begin seeing fines in 2035 with a static grid Implementation of CO2 Mid - Max packages would avoid all fines for CLCPA grid scenario

	CLCPA Grid Scenario			Projected Grid Scenario				Static Grid Scenario				
Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages
2019 Baseline	\$0	\$0	\$41,290	-	\$0	\$0	\$117,769	-	\$0	\$0	\$306,280	-
C02 Light	\$0	\$0	\$521	\$40,768	\$0	\$0	\$54,892	\$62,878	\$0	\$0	\$188,907	\$117,373
CO2 Mid - No Electrification	\$0	\$0	\$0	\$41,290	\$0	\$0	\$44,335	\$73,434	\$0	\$0	\$174,953	\$131,327
CO2 High - 2 Pipe	\$0	\$0	\$0	\$41,290	\$0	\$0	\$242	\$117,528	\$0	\$0	\$118,987	\$187,293
CO2 High - 4 Pipe	\$0	\$0	\$0	\$41,290	\$0	\$0	\$0	\$117,769	\$0	\$0	\$113,513	\$192,767
CO2 Max - Full Electrification	\$0	\$0	\$0	\$41,290	\$0	\$0	\$0	\$117,769	\$0	\$0	\$102,315	\$203,965

*The 2035 GHG emissions limit has not yet been defined and calculations are based on long-term LL97 80% reduction limits.

Recommended Package - CO2 Mid

Beyond 77% reduction in emissions, reductions become more costly

	CO2 Light	CO2 Mid	CO2 High: 2-Pipe	CO2 High: 4-Pipe	CO2 Max
NPV TOTALS	(\$348,674)	(\$455,669)	(\$4,877,694)	(\$8,134,053)	(\$13,392,273)
Total Capital Costs*	(\$14,241,800)	(\$14,864,579)	(\$23,634,704)	(\$28,179,731)	(\$37,029,556)
Total Incremental Capital Cost*	(\$3,395,589)	(\$4,018,367)	(\$11,685,992)	(\$16,231,020)	(\$25,080,844)
Annual Energy Cost Savings	\$415,976	\$471,292	\$695,302	\$724,063	\$780,256
Annual Repairs & Maintenance Savings	\$39,500	\$45,700	\$43,200	\$72,400	\$72,400
Incentives	\$823,990	\$935,896	\$1,222,218	\$1,503,679	\$1,461,491
Simple Payback	5.65	5.96	14.17	18.49	27.70

CO2 Light Reduction: Optimize chilled water plant and convert airside systems to VAV at tenant lease roll - no electrification

CO2 Mid Reduction: CO2 Light + TX fan ERV - no electrification

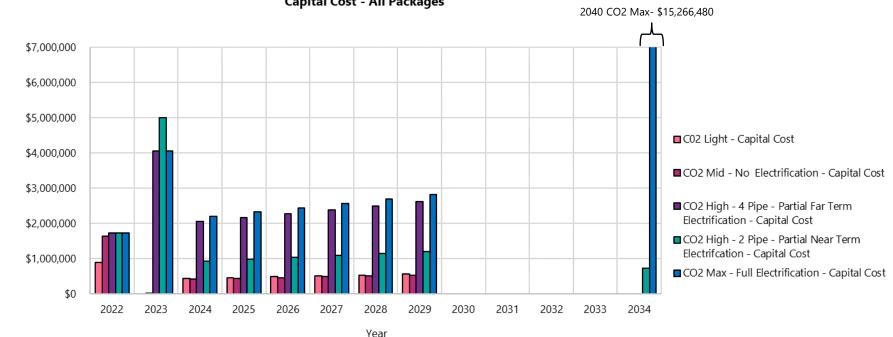
CO2 High 2-Pipe Reduction: Centralized 2-Pipe heat pump change over system - partial near-term electrification

CO2 High 4-Pipe Reduction: Centralized 4-Pipe heat pump - partial long-term electrification

CO2 Max Reduction: CO2 High 4-pipe + envelope measures - Full electrification

Recommended Package - CO2 Mid

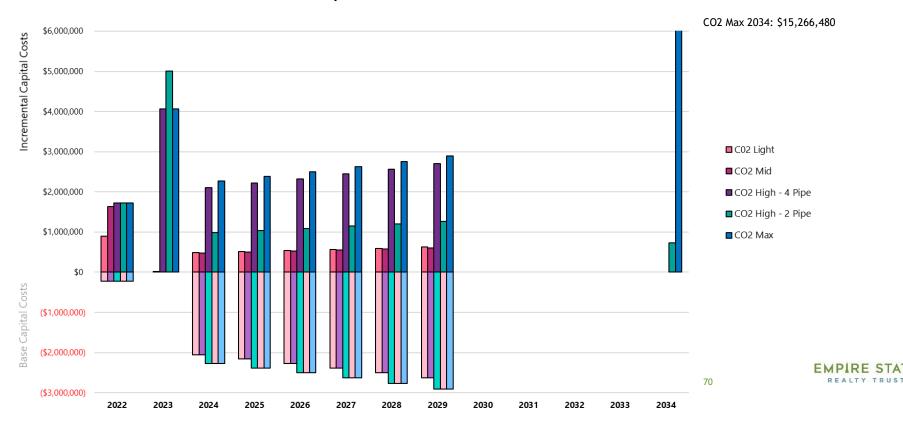
- Fines and energy savings:
 - > The building should not incur any LL97 related fines under the CLCPA grid scenario if the CO2 Mid package is implemented.
 - The CO2 Mid package reduces total carbon emissions by 77.7% from the 2009 baseline. The package nearly meets the goal of 80% reduction. CO2 Light does not meet this target, and the additional carbon emissions reductions of CO2 Mid are available at a similar cost per tCO2 and only a few months impact to payback.
- ► Key ECMs:
 - Chiller plant optimization
 - Conversion of constant volume and VAV diffuser systems to optimized VAV box systems
 - > Chiller plant is 8 years old. Full VAV conversion is a better option than converting to VRF, so a VRF option was not analyzed
 - Base building toilet exhaust energy recovery ventilator
- Timeline for heating electrification:
 - Electrification is not required to meet the LL97 2035 and beyond limits.
 - Heating electrification offers significant energy and carbon savings opportunities, but is not financially viable until the chillers reach end-of-life and need replacement (25 years or 2038)
 - ▶ When the chillers are nearing end-of-life they should be replaced by heat pumps. Hot water infrastructure installation should begin at least 5 years before heat pump installation to maximize use of the heat pump when installed to accelerate emissions reductions and bring forward the date at which the steam system could be decommissioned, if desired.


1350 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

Annual Capital Cost per Package

Capital costs of ECMs that occur at tenant lease roll have been applied to years 2022-2029, since 92% of leases expire within that period.



Capital Cost - All Packages

Capital Cost (\$)

69

Annual Incremental Capital Cost vs. Base Cost per Package

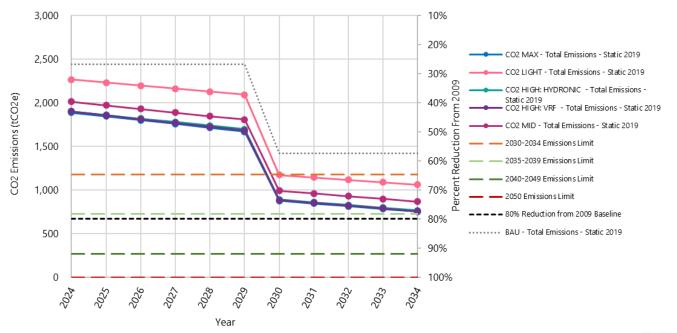
Total Capital Costs - Base Cost & Incremental

1350 Broadway Next Steps - 2022 Projects

The recommended 2022 measures are focused on control measures that have a short payback and will enable energy reduction opportunities in the future

Project	2022 Total Cost	Anticipated Incentives (\$)	Total 2022 Cost w/ Incentives (\$)	Energy Cost Savings
DDC VAV Boxes and Electronic Radiator Valves	\$359,304	\$108,880	\$250,424	\$20,787
Optimization of VAV Diffuser Systems + Electronic Radiator Valves	\$216,700	\$65,667	\$151,033	\$10,560
Control of Pump DP	\$16,500	\$15,000	\$1,500	\$27,766
Retail BMS Upgrades	\$88,000	\$26,999	\$61,001	\$12,933
Chiller Plant Optimization	\$66,000	\$19,064	\$46,936	\$8,557
Radiator Trap Audit & Replacements	Included in Maintenance Budget	-	-	\$16,357
Reduce Steam Pressure and Steam Cycling	\$16,500	\$698	\$15,802	\$5,270
Toilet Exhaust Energy Recovery Ventilator	\$517,000	\$3,446	\$513,554	\$25,380
Total	\$1,280,004	\$239,753	\$1,040,251	\$127,610
BMS Backbone	\$440,000	\$0	\$440,000	\$0
Total with BMS	\$1,720,004	\$239,753	\$1,480,251	\$127,610

DEALTY TRUST


1359 Broadway

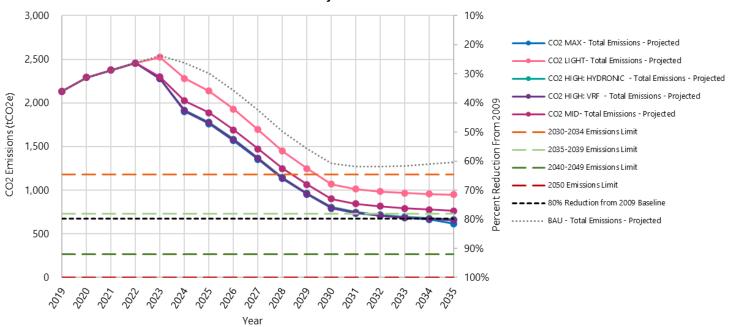
Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, LL97 Grid Coefficients

BAU does not achieve 2030 LL97 compliance;

CO2 Light and above packages achieve 2030 LL97 compliance

Total CO2 Emissions vs. Year - LL97 Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Static Grid Scenario


No packages would meet 80% reduction from 2009 baseline by 2035; No packages would achieve 2030 LL97 compliance

> 3,000 10% 20% CO2 MAX - Total Emissions - Static 2019 2,500 30% CO2 LIGHT - Total Emissions - Static 2019 Percent Reduction From 2009 CO2 HIGH: HYDRONIC - Total Emissions - Static CO2 Emissions (tCO2e) 2,000 40% 2019 CO2 HIGH: VRF - Total Emissions - Static 2019 50% CO2 MID - Total Emissions - Static 2019 1,500 2030-2034 Emissions Limit 60% 2035-2039 Emissions Limit 1,000 70% 2040-2049 Emissions Limit 2050 Emissions Limit 80% 80% Reduction from 2009 Baseline 500 90% 0 100% ²⁰² ²⁰²⁰ 2027 ²023 2037 ²⁰³² ²⁰³⁵ 2022 2024 2025 ²⁰²⁶ ²⁰²⁸ 2029 2030 ²⁰³³ 2034 2079 Year

Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Projected Grid Scenario

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035; CO2 High and above packages meet 2035 LL97 compliance

Total CO2 Emissions vs. Year - Projected Grid Scenario

75

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, CLCPA Grid Scenario

CO2 Light and above packages meet 80% reduction from 2009 baseline by 2035; CO2 Light and above packages meet 2035 LL97 compliance

3,000 10% 20% 2,500 CO2 MAX - Total Emissions - CLCPA 30% CO2 LIGHT - Total Emissions - CLCPA 2009 CO2 Emissions (tCO2e) CO2 HIGH: HYDRONIC - Total Emissions - CLCPA 2,000 40% CO2 HIGH: VRF - Total Emissions - CLCPA From 50% CO2 MID - Total Emissions - CLCPA 1,500 2030-2034 Emissions Limit Percent Reduction 60% 2035-2039 Emissions Limit ** 2040-2049 Emissions Limit 1,000 70% 2050 Emissions Limit 80% 80% Reduction from 2009 Baseline 500 ······ BAU - Total Emissions - CLCPA 90% 0 100% 202 2025 2020 2020 2022 2020 2020 2022 2024 2021 202 Year

Total CO2 Emissions vs. Year - CLCPA Target Grid Scenario

Percent Carbon Emissions Reductions - All Grid Scenarios

STATIC GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-31.8%	-43.4%	-56.7%	-64.1%
CO2 HIGH: HYDRONIC	-30.6%	-39.7%	-56.0%	-61.8%
CO2 HIGH: VRF	-31.3%	-40.9%	-56.4%	-62.5%
CO2 MID	-25.6%	-34.7%	-52.8%	-58.6%
CO2 LIGHT	-13.0%	-20.7%	-44.8%	-49.7%

No packages would meet 80% reduction from 2009 baseline by 2035; No packages would achieve 2030 LL97 compliance

PROJECTED GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-62.9%	-71.1%	-76.5%	-81.7%
CO2 HIGH: HYDRONIC	-62.3%	-68.9%	-76.1%	-80.3%
CO2 HIGH: VRF	-62.6%	-69.3%	-76.3%	-80.5%
CO2 MID	-57.8%	-64.2%	-73.2%	-77.3%
CO2 LIGHT	-49.9%	-55.6%	-68.2%	-71.8%

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035;

CO2 High and above packages meet 2035 LL97 compliance

CLCPA TARGET GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-70.6%	-82.3%	-81.3%	-88.8%
CO2 HIGH: HYDRONIC	-70.2%	-80.7%	-81.1%	-87.7%
CO2 HIGH: VRF	-70.3%	-80.8%	-81.2%	-87.8%
CO2 MID	-65.7%	-76.2%	-78.3%	-84.9%
CO2 LIGHT	-59.0%	-69.7%	-74.0%	-80.8%

CO2 Light and above packages meet 80% reduction from 2009 baseline by 2035;

CO2 Light and above packages meet 2035 LL97 compliance

77

1359 Broadway Case Study

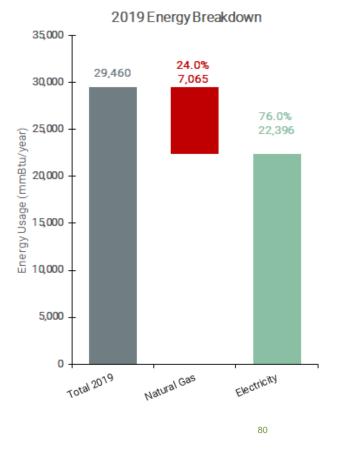
Energy Modeling

ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

1359 Broadway - Current Building Systems

- Cooling
 - Tenant Systems
 - Self-contained air-cooled AHUs approximately 51 (3-16 years, average 9)
 - Wolfgangs condenser water heat pump system (3 years)
 - NYSERDA VRF (9 years)
 - Ariela Alpha International 2 RTUs (15 years)
 - ▶ I-Deal LLC 2 air-cooled chillers (16 years)
 - Base Building Systems
 - AHUs Approximately 7 (10 years)
- Heating
 - Tenant Systems
 - NYSERDA VRF (9 years base building radiators disconnected)
 - Electric unit heaters for ventilation (inefficient resistance heat design)
 - Base Building Systems
 - Two Steam Boilers (13 years)
 - Perimeter cast iron radiators (most original)
 - Gas-fired domestic water heater (15 years)
- BMS
 - > Present but not unified across building, most systems are standalone

2019 Energy Breakdown by Utility

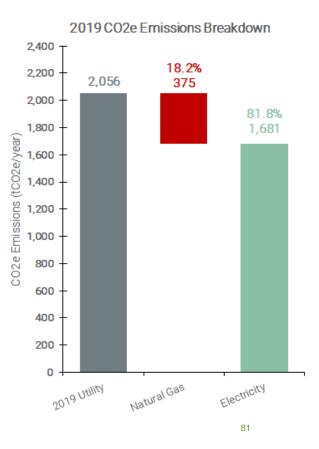

Natural gas consumption used for heating makes up 24.0% of energy usage

Electricity

- ▶ 76.0% of energy usage
- ▶ 81.8% of CO2e emissions

Natural Gas

- > 24.0% of energy usage
- ▶ 18.2% of CO2e emissions


REALTY TRUST

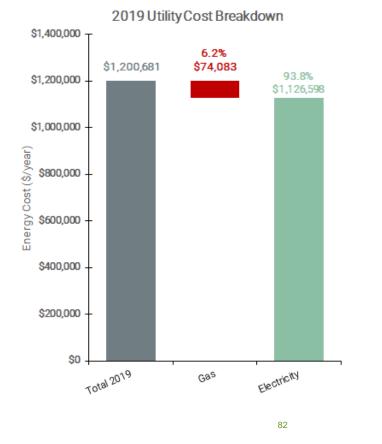
2019 CO2e Emissions Breakdown by Utility

Natural gas has slightly lower associated emissions than electricity

Electricity - 256.0 tCO2e/GWh

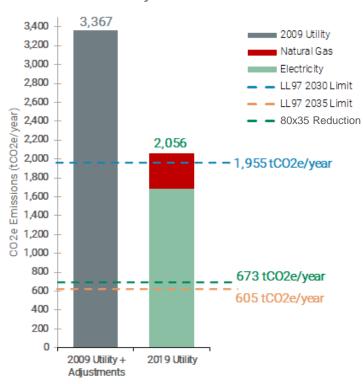
Natural Gas - 181.2 tCO2e/GWh (LL97)

2019 Operational Cost Breakdown by Utility


Natural gas is cheaper than electricity & therefore makes up a smaller portion (6.2%) of utility costs

Electricity

- 93.8% of operational costs
- ► 76.0% of energy usage


Natural Gas

- ▶ 6.2% of operational costs
- 24.0% of energy usage

REALTY TRUST

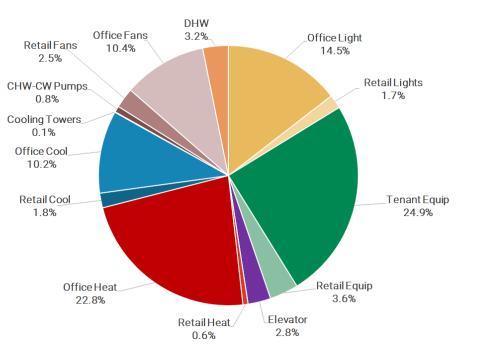
1359 Broadway Current Status for LL97 and 80x35 Metrics

1359 Broadway CO2e Emissions Breakdown

Key Takeaways:

- Building meets 2024 limit of 3,684 tCO2e/year
- 4.9% emissions reduction is required to meet LL97 2030 target
- 70.5% emissions reduction is required to meet LL97 2035 target
 - Building + Grid Improvements

38.9% CO2e reduction between 2009 and 2019

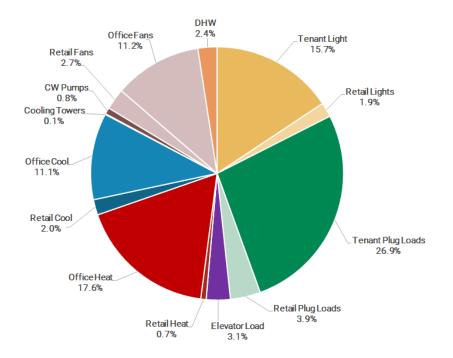

- ▶ 32% due to electrical grid improvements
- 27% due to switch of boiler fuel source from fuel oil to natural gas
- 40% due to partial decommissioning of inefficient 2nd floor chiller plant

1359 Broadway Energy Model: 2019 Energy Breakdown by End-Use

Office and retail lighting/equipment accounts for 44.7% of the total 2019 energy usage

Major End Uses:

- ▶ Office + Retail Lighting & Equip. 44.7%
- Office + Retail Heating 23.4%
- Office + Retail Fans 12.9%
- Office + Retail Cooling 12.1%
 - DX units and cooling towers


84

1359 Broadway Energy Model: 2019 CO2e Emissions Breakdown by End-Use

Office and retail lighting/equipment accounts for 48.4% of the total 2019 CO2e emissions

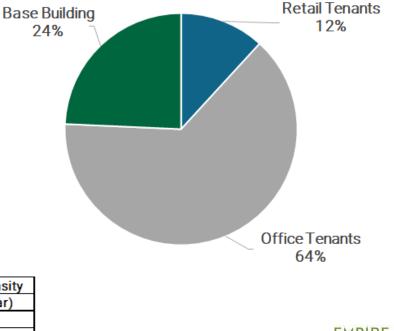
Major End Uses:

- Office + Retail Lighting & Equip. 48.4%
- Office + Retail Heating 18.3%
- Office + Retail Fans 13.9%
- ▶ Office + Retail Cooling 13.2%
 - ► DX units and cooling towers

85

1359 Energy Model: 2019 CO2e Emissions Breakdown by User

Office and retail tenants account for ~76% of total 2019 CO2e emissions


Base Building includes:

- Central gas-to-steam system
- Elevators
- Lobby HVAC units
- BOH lighting and equipment

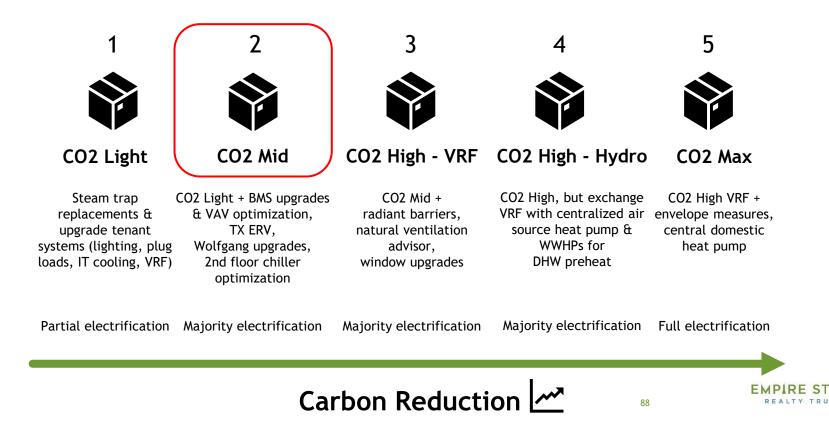
Office and Retail tenants are responsible for their respective HVAC systems

Wolfgang's and fresh&co (restaurants) are high energy users

Cooco Typo	Square	Footage	Energy Intensity	Carbon Intensity		
Space Type	SF	*	(kBtu/SF/year)	(lbs/SF/year)		
Retail Tenants	15,849	4.2%	210.7	34.8		
Office Tenants	362,633	95.8%	49.9	8.2		

86

Ownership of CO2e Emissions


1359 Broadway Case Study

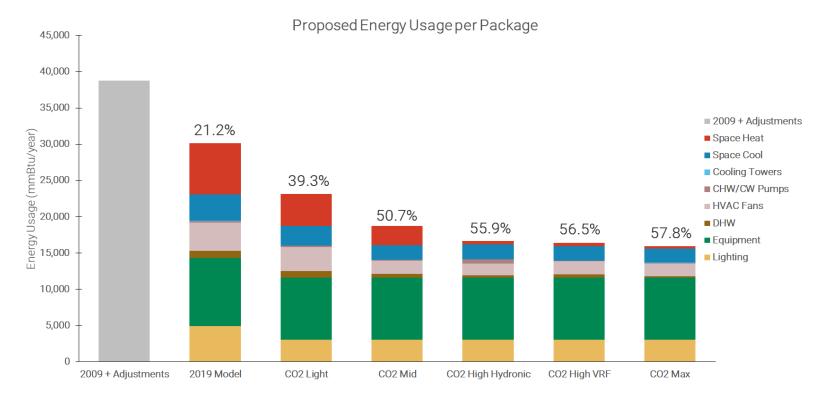
Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

ECM Packages

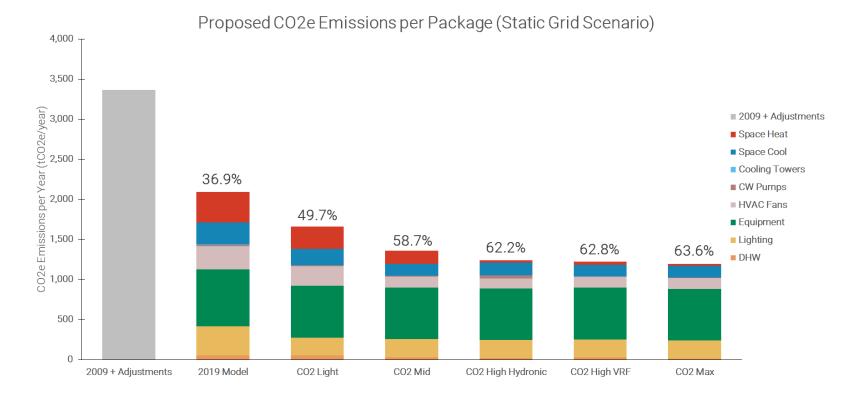
Five packages of ECMs developed to optimize NPV and CO2 reductions & test various HVAC systems

ECM Phases & Implementation Timeline: CO2 Mid

ENERG	BY CONS	ERVATION MEASURES (ECMS)							IMPLE	MENTA		IELINE						
Phase	Tag	Short Name	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Phase 1	CO001	BMS Backbone	0%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 1	CO002	DDC VAV boxes & BMS Radiator Valves, Setpoints, Steam Pressure			100%	100%												100%
Phase 1	CO005	Retail BMS Upgrades			100%	100%												100%
Phase 1	SS002	Radiator Trap Audit & Replacements			100%	100%												100%
Phase 1	AS004	Decouple IT loads from 2nd Flr Chiller			100%	100%												100%
Phase 2	CO006	Demand Control Ventilation for Kitchen			0%	100%	100%											100%
Phase 2	DW002	Wolfgang's Domestic Water Heat Pump				100%												100%
Phase 2	EN006	Mitigate Lobby Infiltration				100%												100%
Phase 2	LT001	Efficient Light Fixtures & Layout				100%												100%
Phase 3	TL001	Tenant Plug Load Controls				8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%
Phase 3	TL002	Tenant IT Cooling				8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%
Phase 3	LT002	Day Lighting & Vacancy Control				8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%
Phase 3	AS001	VRF + ERV				8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%
Phase 3	AS002	TX Duct to ERV				8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%
Phase 3	CO003	Outside Air Flow Control & Demand Controlled Ventilation	0%	0%	0%	8%	17%	25%	33%	42%	50%	58%	67%	75%	83%	92%	100%	100%


1359 Broadway Case Study

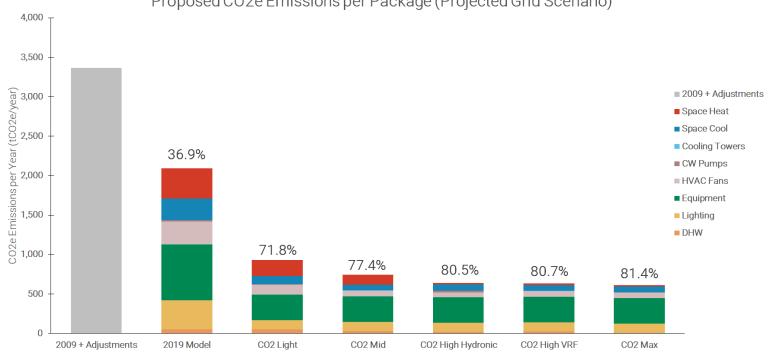
Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget


ECM Package Comparison - Energy

Packages range from 39.3% to 57.8% reduction in total energy from 2009 + Adjustments benchmark year

Projected CO2 Emissions - Static 2019 Grid Scenario

Packages range from 49.7% to 63.6% reduction in total CO2e emissions from 2009 + Adjustments benchmark year

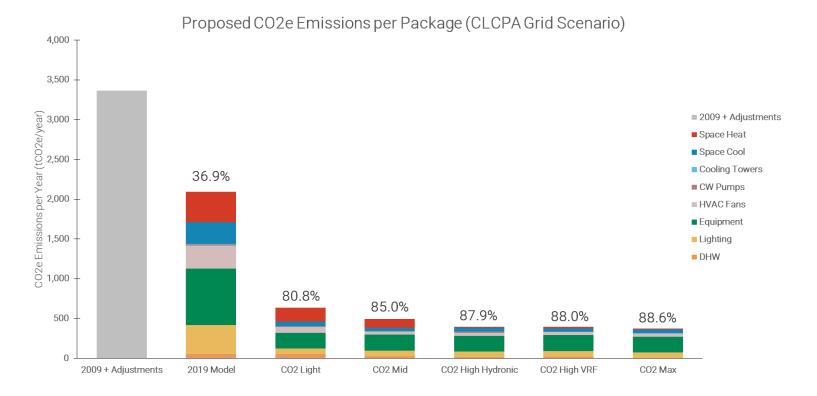

92

FMPIRE

REALTY TRUST

Projected CO2 Emissions - Projected Grid Scenario

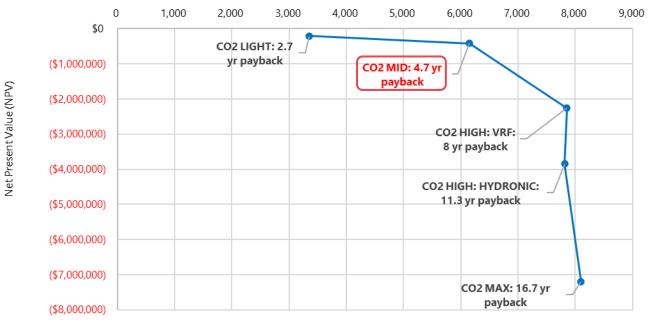
Packages range from 71.8% to 81.4% reduction in total CO2e emissions from 2009 + Adjustments benchmark year



Proposed CO2e Emissions per Package (Projected Grid Scenario)

Projected CO2 Emissions - CLCPA Grid Scenario

Packages range from 80.8% to 88.6% reduction in total CO2e emissions from 2009 + Adjustments benchmark year


1359 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

NPV, CO2 Reductions and Simple Payback for all Packages

Although CO2 High VRF has a payback of only 8 yrs, CO2 Mid meets both 80% reduction target and LL97 limits

NPV vs. CO2 Reduction over 15 Year Period of Packages (CLCPA Target Grid Scenario)

CO2 Reduction (tCO2e)

REALTY TRUST

LL97 Annual Fines for all Packages

With BAU scenario, 1359 would begin seeing fines in 2030 with a static grid Implementation of any package between CO2 Mid - Max would eliminate fines for CLCPA grid scenario

	CLCPA Grid Scenario			Projected Grid Scenario				Static Grid Scenario				
Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Fine Avoidance due to ECM Packages
2019 Baseline	\$0	\$0	\$94,416	-	\$0	\$0	\$191,267	-	\$0	\$68,376	\$429,992	-
CO2 Light	\$0	\$0	\$11,184	\$83,231	\$0	\$0	\$92,109	\$99,158	\$0	\$0	\$291,576	\$138,416
CO2 Mid	\$0	\$0	\$0	\$94,416	\$0	\$0	\$42,391	\$148,876	\$0	\$0	\$211,346	\$218,646
CO2 High - VRF	\$0	\$0	\$0	\$94,416	\$0	\$0	\$13,407	\$177,861	\$0	\$0	\$175,912	\$254,081
CO2 High - Hydronic	\$0	\$0	\$0	\$94,416	\$0	\$0	\$15,940	\$175,327	\$0	\$0	\$182,571	\$247,421
CO2 Max	\$0	\$0	\$0	\$94,416	\$0	\$0	\$3,244	\$188,024	\$0	\$0	\$161,816	\$268,176

*The 2035 GHG emissions limit has not yet been defined and calculations are based on long-term LL97 80% reduction limits.

Recommended Package - CO2 Mid

	CO2 Light	CO2 Mid	CO2 High - VRF	CO2 High - Hydronic	CO2 Max
NPV TOTALS	(\$211,272)	(\$416,493)	(\$2,264,058)	(\$3,843,504)	(\$7,203,216)
Total Capital Cost*	(\$24,957,611)	(\$27,913,298)	(\$30,914,828)	(\$32,851,675)	(\$38,501,863)
Total Incremental Capital Cost*	(\$3,008,281)	(\$5,586,968)	(\$8,588,498)	(\$10,525,345)	(\$16,175,533)
Annual Energy Cost Savings	\$382,733	\$633,622	\$709,062	\$664,959	\$758,815
Annual Repairs & Maintenance Savings	\$31,200	\$35,200	\$53,575	\$50,975	\$53,575
Incentives	\$1,904,620	\$2,455,932	\$2,505,123	\$2,468,499	\$2,617,711
Simple Payback	2.67	4.68	7.98	11.25	16.69

CO2 Light Reduction – Upgrade tenant systems (lighting, plug loads, HVAC), partial electrification

CO2 Mid Reduction - Upgrade tenant systems and resolve current building inefficiencies, partial electrification

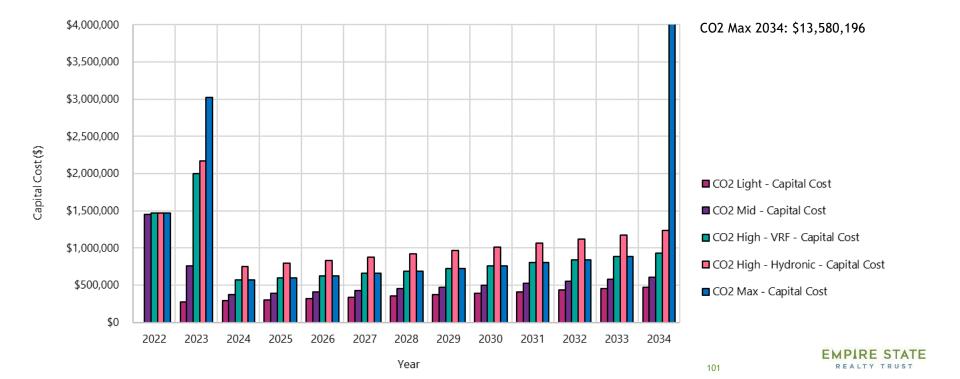
CO2 High Reduction: VRF – CO2 Mid and accessory energy saving measures, partial electrification

CO2 High Reduction: Hydronic - CO2 High VRF but with hydronic systems, partial electrification

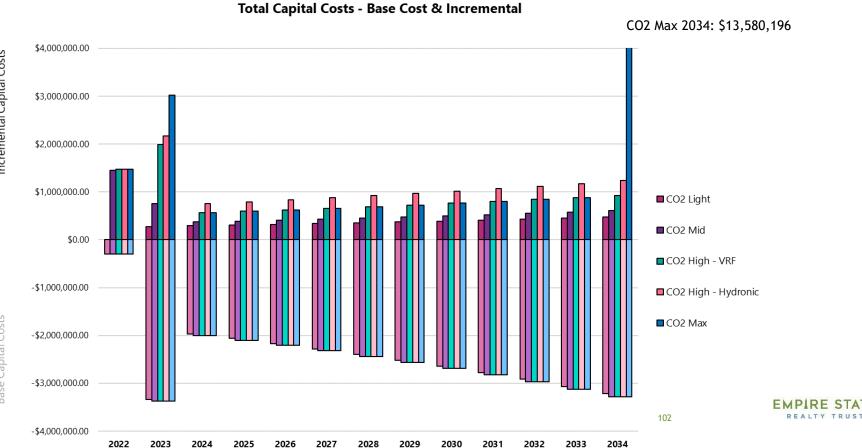
CO2 Max Reduction - CO2 High VRF + envelope measures + central domestic heat pump, full electrification

Recommended Package - CO2 Mid

- Upgrade controls for existing systems—not included in CO2 Light— since it provides good, immediate carbon savings and reduces risks of not meeting targets on time if existing systems are kept in place longer than our model anticipates
 - > Will reduce system conflict between tenant cooling systems and base building steam heating system
 - > These upgrades pay back well within the remaining useful life of these systems and improve comfort and acoustics
- Resolve current building inefficiencies through minor system upgrades
 - ▶ Removing IT Loads from the 2nd floor tenant chiller should reduce run time and capacity issues
 - > Providing adequate sealing at lobby façade will reduce infiltration and stack effect
 - > Providing DCV for kitchen exhaust systems and water source heat pumps for retail DHW usage will improve retail system efficiencies
- Plan for replacement of existing self-contained air-cooled systems with hybrid VRF heat pumps at minimal incremental cost at the time of tenant fit outs
 - Uncompetitive market for through-wall air-cooled units which struggle to conform with forthcoming energy codes; in contrast VRF systems are offered by multiple manufacturers with robust warranties
 - ▶ VRF systems are very efficient and allow for on-floor heat recovery:
 - > Lower distribution energy required water/refrigerant is the medium used, not air, up to the space served
 - > Each zone produces the volume and temperature of air required to satisfy the load in that specific zone
 - Allows heat recovery to heat perimeter zones using heat produced from cooling interior zones
 - More energy efficient due to multiple inverter driven compressors
 - > Allows decoupling of outdoor air and conditioning air resulting in proper zone ventilation and improved air quality


1359 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget



Annual Capital Cost per Package

Incremental Capital Cost - All Packages

Annual Incremental Capital Cost vs. Base Cost per Package

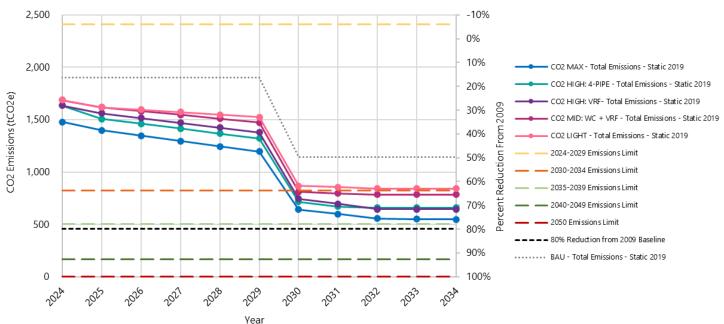
Incremental Capital Costs

Base Capital Costs

1359 Broadway Next Steps - 2022 Projects

The recommended 2022 measures are focused on control measures that have a short payback and will enable energy reduction opportunities in the future.

Project	2022 Total Cost	Anticipated Incentives (\$)	Total 2022 Cost w/ Incentives (\$)	Energy Cost Savings
DDC VAV boxes & BMS Radiator Valves, Setpoints, Steam Pressure	\$808,962	\$245,140	\$563,822	\$111,542
Decouple IT loads from 2nd Flr Chiller	\$113,300	\$12,064	\$101,236	\$5,488
Retail BMS Upgrades	\$44,000	\$40,000	\$4,000	\$18,897
Radiator Trap Audit & Replacements	Included in LL87 Compliance Budget	-	-	\$3,787
Natural Ventilation Advisor Pilot	\$995	\$905	\$90	\$661
Total	\$967,257	\$298,109	\$669,148	\$140,375
BMS Backbone	\$440,000	\$0	\$440,000	\$0
Total with BMS	\$1,407,257	\$298,109	\$1,109,148	\$140,375


REALTY TRUST

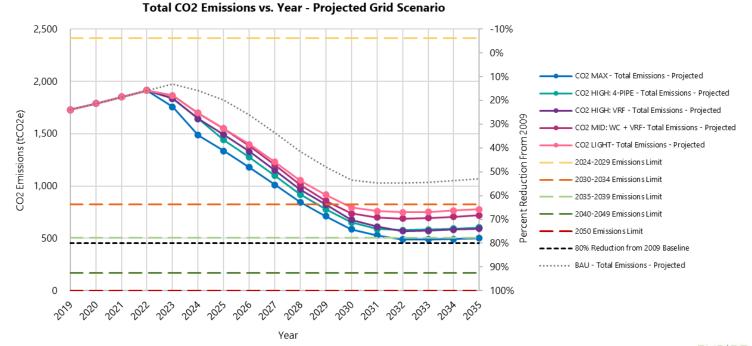
1333 Broadway

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, LL97 Grid Coefficients

BAU & CO2 Light does not achieve 2030 LL97 compliance; CO2 Mid and above packages achieve 2030 LL97 compliance

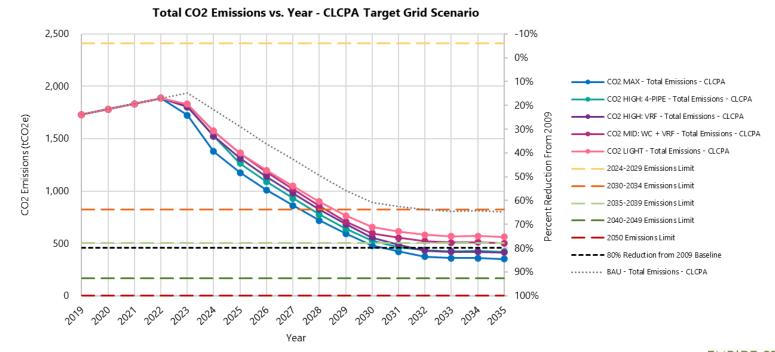
Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Static Grid Scenario


Total CO2 Emissions vs. Year - Static 2019 Grid Scenario

No packages would meet 80% reduction from 2009 baseline by 2035; No packages would achieve 2030 LL97 compliance

> 2,500 -10% 0% 10% 2,000 CO2 MAX - Total Emissions - Static 2019 20% CO2 HIGH: 4-PIPE - Total Emissions - Static 2019 CO2 Emissions (tCO2e) CO2 HIGH: VRF- Total Emissions - Static 2019 2009 30% 1,500 CO2 MID: WC + VRF - Total Emissions - Static 2019 40% CO2 LIGHT - Total Emissions - Static 2019 Ы 2024-2029 Emissions Limit 50% Ē 1,000 2030-2034 Emissions Limit Redu 60% 2035-2039 Emissions Limit 70% 2040-2049 Emissions Limit 500 2050 Emissions Limit 80% 80% Reduction from 2009 Baseline 90% ······ BAU - Total Emissions - Static 2019 0 100% 2010 Year


Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Projected Grid Scenario

No packages would meet 80% reduction from 2009 baseline by 2035; Only CO2 Max package achieves 2035 LL97 compliance

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, CLCPA Grid Scenario

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035; Only CO2 Mid and above packages meet 2035 LL97 compliance

Projected Annual Carbon Emissions - Summarized

STATIC GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035	_
CO2 MAX	-41.2%	-49.3%	-55.4%	-61.6%	
CO2 HIGH: 4-PIPE	-33.6%	-38.6%	-49.7%	-53.5%	
CO2 HIGH: VRF	-31.9%	-39.8%	-48.4%	-54.4%	
CO2 MID: WC + VRF	-24.6%	-27.1%	-42.9%	-44.7%	
CO2 LIGHT	-21.5%	-24.0%	-40.5%	-42.4%	

No packages would meet 80% reduction from 2009 baseline by 2035; No packages would achieve 2030 LL97 compliance

PROJECTED GRID SCENARIO

_	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-66.1%	-70.9%	-74.3%	-78.0%
CO2 HIGH: 4-PIPE	-62.3%	-65.0%	-71.4%	-73.5%
CO2 HIGH: VRF	-60.8%	-65.6%	-70.3%	-74.0%
CO2 MID: WC + VRF	-57.4%	-58.3%	-67.7%	-68.4%
CO2 LIGHT	-54.0%	-55.0%	-65.1%	-65.9%

No packages would meet 80% reduction from 2009 baseline by 2035; Only CO2 Max package achieves 2035 LL97 compliance

CLCPA TARGET GRID SCENARIO

	2019 - 2030	2019 - 2035	2009 - 2030	2009 - 2035
CO2 MAX	-72.2%	-79.7%	-78.9%	-84.6%
CO2 HIGH: 4-PIPE	-69.4%	-75.8%	-76.8%	-81.6%
CO2 HIGH: VRF	-67.9%	-76.1%	-75.7%	-81.9%
CO2 MID: WC + VRF	-65.4%	-71.0%	-73.8%	-78.0%
CO2 LIGHT	-62.0%	-67.5%	-71.2%	-75.4%

CO2 High and above packages meet 80% reduction from 2009 baseline by 2035;

Only CO2 Mid and above packages meet 2035 LL97 compliance

1333 Broadway Case Study

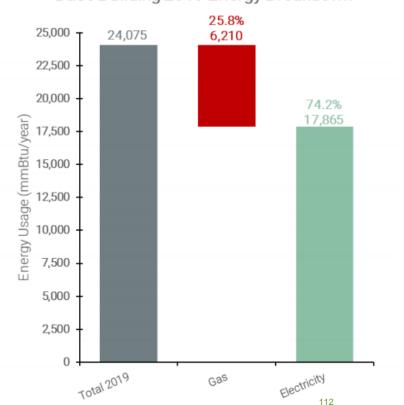
Energy Modeling

ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

1333 Broadway - Current Building Systems

- Floors 8-12 and part of 7
 - Steam radiators (gas boiler), thermostatic valves and water-cooled DX VAV air handlers
- Floors 3-6 and balance of 7
 - Steam radiators (gas boiler), manual valves and self-contained air-cooled DX VAV
- Urban Outfitters
 - Split DX and gas fired RTUs
- Shake shack
 - Air-cooled VRF
- Other retail
 - Self-contained air-cooled DX

2019 Energy Breakdown by Utility

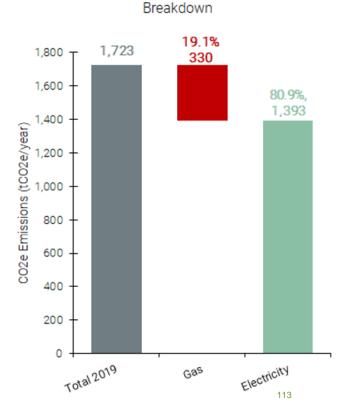

Natural gas consumption used for heating makes up 25.8% of energy usage

Electricity

- 74.2% of energy usage
- ▶ 80.3% of CO2e emissions

Natural Gas

- 25.8% of energy usage
- ▶ 19.7% of CO2e emissions


Base Building 2019 Energy Breakdown

2019 CO2e Emissions Breakdown by Utility

Natural gas has slightly lower associated emissions than electricity

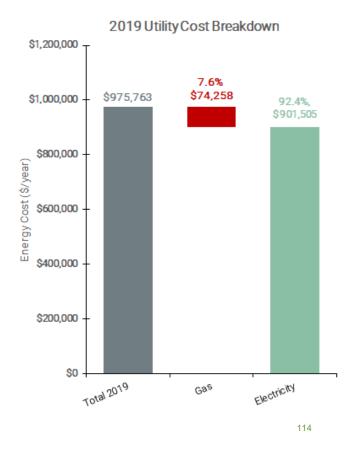
Electricity - 256.0 tCO2e/GWh

Natural Gas - 181.2 tCO2e/GWh (LL97)

LTY TRUST

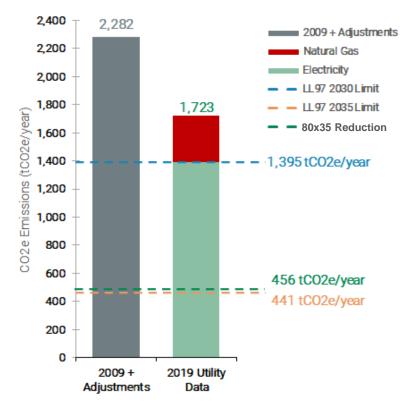
Base Building 2019 CO2e Emissions

2019 Operational Cost Breakdown by Utility


Natural gas is cheaper than electricity & therefore makes up a smaller portion (7.6%) of utility costs

Electricity

- ▶ 92.4% of operational costs
- ► 74.2% of energy usage


Natural Gas

- ▶ 7.6% of operational costs
- 25.8% of energy usage

ALTY TRUS

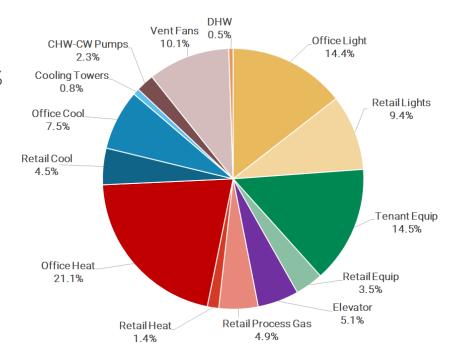
1333 Broadway Current Status for LL97 and 80x35 Metrics

1333 CO2e Emissions Breakdown

Key Takeaways:

- Building meets 2024 limit of 2,871 tCO2e/year
- 19.0% emissions reduction is required to meet LL97 2030 target
- 74.4% emissions reduction is required to meet LL97 2035 target
 - Building + grid improvements

24.5% CO2e reduction between 2009 and 2019

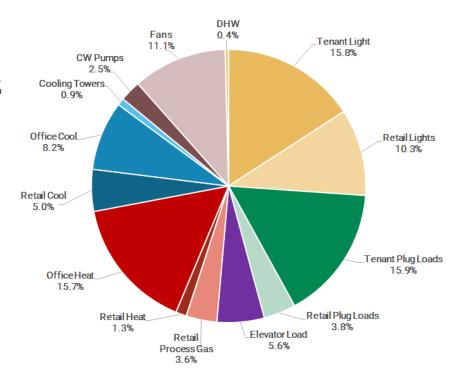

- 57% due to a switch of boiler fuel source from fuel oil to natural gas
- ► 43% due to electrical grid improvements

1333 Broadway Energy Model: 2019 Energy Breakdown by End-Use

Office and retail lighting/equipment accounts for 46.7% of the total 2019 energy usage

Major End Uses:

- ▶ Office + Retail Lighting & Equip. 46.7%
- Office + Retail Heating 22.5%
- ▶ Office + Retail Cooling 12.8%
 - ▶ DX units and cooling towers
- All Fans 10.1%



1333 Broadway Energy Model: 2019 CO2e Emissions Breakdown by End-Use

Office and retail lighting/equipment accounts for 49.8% of the total 2019 CO2e emissions

Major End Uses:

- Office + Retail Lighting & Equip. 49.8%
- Office + Retail Heating 17.0%
- Office + Retail Cooling 14.1%
 - DX units and cooling towers
- All Fans 11.1%

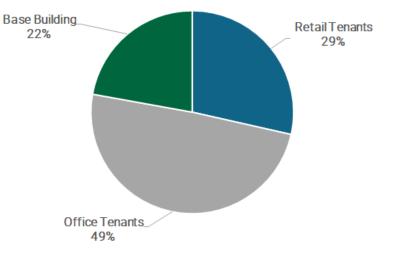
EMPIRE STATE

1333 Energy Model: 2019 CO2e Emissions Breakdown by User

Office and retail tenants account for ~68% of total 2019 CO2e emissions

Base Building usage includes:

- Central gas-to-steam system
- Elevators
- Lobby HVAC units
- BOH lighting and equipment

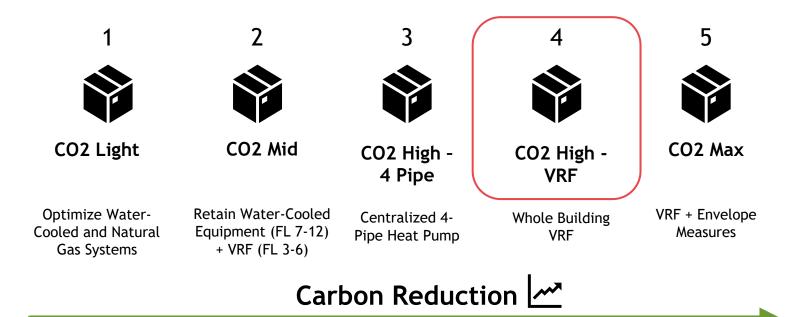

Office and Retail tenants responsible for their respective HVAC and CW system

Urban Outfitters is a high energy user due to lighting use and design

Shake Shack has significant natural gas

Space Type	Square Footage SF %		Energy Intensity	Carbon Intensity
Space Type			(kbtu/SF/year)	lbs/SF/year
Retail Tenants	69,563 25%		81.1	14.6
Office Tenants	205,192	75%	56.4	8.6

Ownership of CO2e Emissions


1333 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

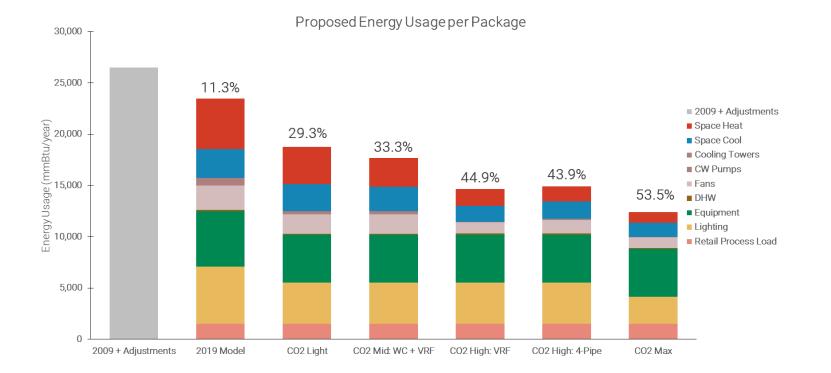
ECM Packages

Five packages of ECMs developed to optimize NPV and CO2 reductions & test various HVAC systems

120

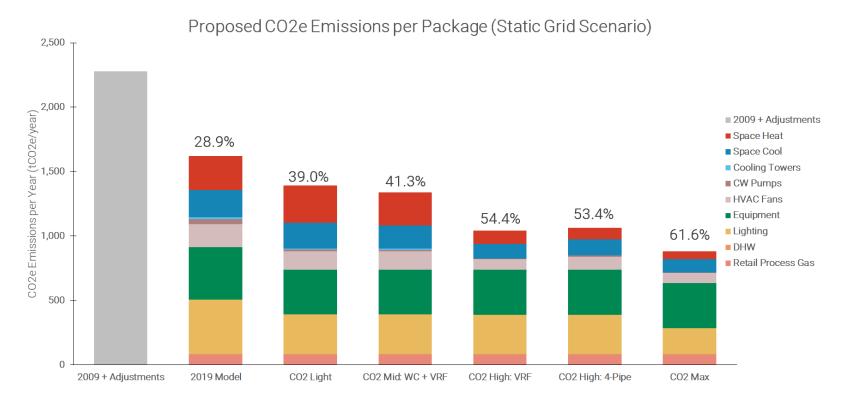
ECM Phases & Implementation Timeline: CO2 High VRF

ENERGY CONSERVATION MEASURES (ECMS)							IMPLEME		TIMELINE				
Phase	Тад	Short Name	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Phase 1	CO001	DDC VAV boxes & BMS Radiator Valves, Setpoints, Steam pressure	33%	67%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Phase 1	CO002	Outside Air Flow Control & Demand Controlled Ventilation	33%	67%	100%	100%							100%
Phase 1	CO005	Retail Equipment BMS	50%	100%	100%	100%							100%
Phase 1	CO006	Condenser Water Pumping & Temperature	50%	100%									
Phase 1	EN011	Window U-Value & SHGC Improvements	50%	100%	100%								100%
Phase 1	SS004	Radiator Trap Audit & Replacements	50%	100%	100%								100%
Phase 2	LT001	Plug Load Control	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%
Phase 2	LT002	Efficient Light Fixtures & Layout	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%
Phase 2	LT005	Day Lighting & Vacancy Control	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%
Phase 2	LT009	Tenant IT Cooling	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%
Phase 3	AC003	Replace Water-Cooled AC w/ Air-Cooled VRF + ERV (Floors 7-12)								33%	67%	100%	100%
Phase 3	AC004	Through-Wall or Roof VRF + ERV (Floors 3-6)				25%	50%	75%	100%				100%
Phase 3	AC005	Urban Outfitters Space VRF	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%
Phase 3	DW004	AC Waste Heat Recovery for Domestic Hot Water	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	100%


1333 Broadway Case Study

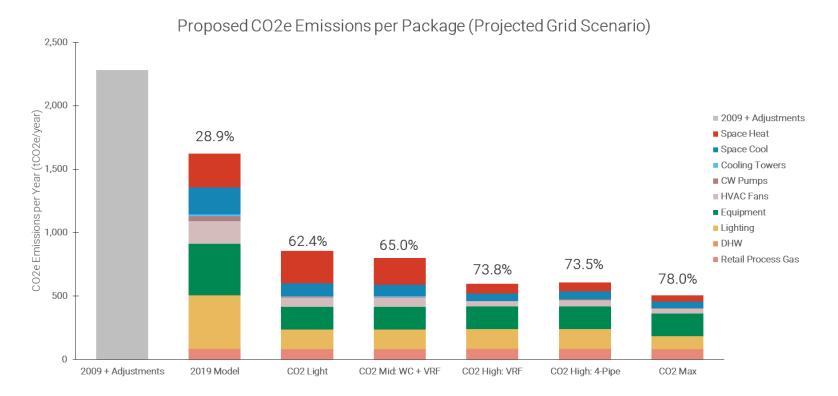
Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

ECM Package Comparison - Energy


Packages range from 29.3% to 53.5% reduction in total energy from 2009 + Adjustments benchmark year

EMPIRE STATE

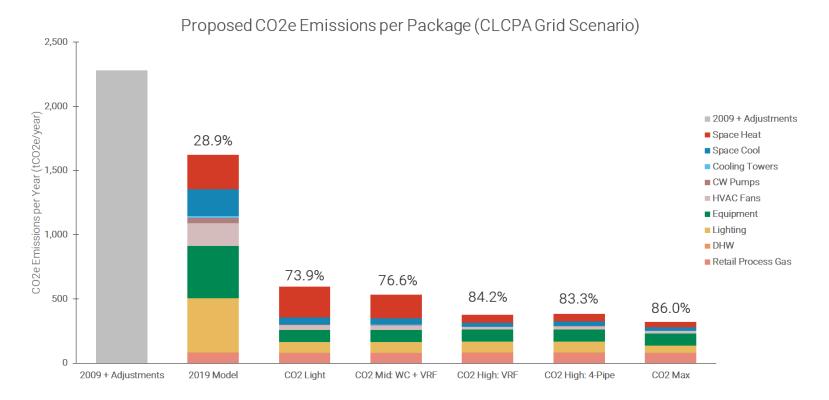
Projected CO2 Emissions - Static 2019 Grid Scenario


Packages range from 39.0% to 61.6% reduction in total emissions from 2009 + Adjustments benchmark year

EMPIRE STATE

Projected CO2 Emissions - Projected Grid Scenario

Packages range from 62.4% to 78.0% reduction in total emissions from 2009 + Adjustments benchmark year

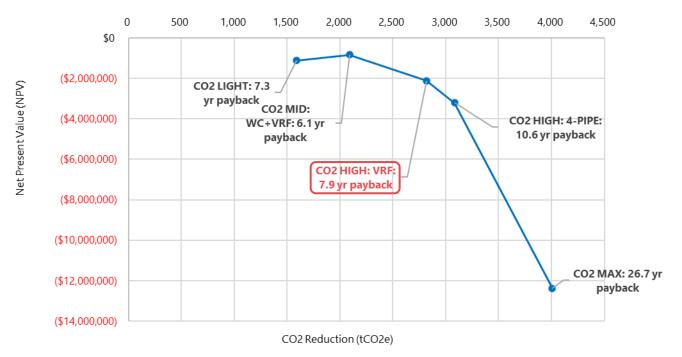


125

EMPIRE REALTY TRUST

Projected CO2 Emissions - CLCPA Grid Scenario

Packages range from 76.6% to 86.0% reduction in total emissions from 2009 + Adjustments benchmark year


EMPIRE STAT

1333 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

NPV, CO2 Reductions and Simple Payback for all Packages

NPV vs. CO2 Reduction over 15 Year Period of Packages (CLCPA Target Grid Scenario)

NPV calculated with 6% discount rate

128

LL97 Annual Fines for all Packages

The recommended package is the lowest package that would avoid fines. With BAU scenario, 1333 would begin seeing fines in 2030 with a static grid. Implementation of 4-Pipe, VRF or CO2 Max packages would avoid all fines in the CLCPA grid scenario.

	LL97 ANNUAL FINES											
		CLCPA Gri	d Scenario			Projected G	rid Scenario)		Static Grid	d Scenario	
Packages	Total Fine from 2024- 2029	I otal Fine	Annual Fine Starting As Soon As 2035*	-	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	Avoidance	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine Starting As Soon As 2035*	-
2019 Baseline Consumption	\$0	\$0	\$95,915	-	\$0	\$0	\$167,797	-	\$0	\$446,116	\$344,974	-
CO2 Light	\$0	\$0	\$32,221	\$63,694	\$0	\$0	\$90,387	\$77,410	\$0	\$0	\$233,757	\$111,217
CO2 Mid: WC + VRF	\$0	\$0	\$16,055	\$79,860	\$0	\$0	\$74,774	\$93,023	\$0	\$0	\$219,506	\$125,467
CO2 High: VRF	\$0	\$0	\$0	\$95,915	\$0	\$0	\$40,986	\$126,811	\$0	\$0	\$160,560	\$184,414
CO2 High: 4-Pipe	\$0	\$0	\$0	\$95,915	\$0	\$0	\$43,859	\$123,937	\$0	\$0	\$166,330	\$178,644
CO2 Max	\$0	\$0	\$0	\$95,915	\$0	\$0	\$16,590	\$151,207	\$0	\$0	\$116,482	\$228,492

*The 2035 GHG emissions limit has not yet been defined and calculations are based on long-term LL97 80% reduction limits.

Recommended Package - CO2 High: VRF

	CO2 Light	CO2 Mid: WC + VRF	CO2 High: VRF	CO2 High: 4-Pipe	CO2 Max
NPV TOTALS	(\$1,121,458)	(\$830,644)	(\$2,157,822)	(\$3,208,006)	(\$12,366,843)
Total Capital Cost*	(\$3,272,554)	(\$6,528,423)	(\$13,154,375)	(\$12,832,760)	(\$30,218,293)
Total Incremental Capital Cost*	(\$3,272,554)	(\$3,567,311)	(\$7,157,263)	(\$8,868,060)	(\$24,221,181)
Annual Energy Cost Savings	\$305,945	\$316,492	\$530,066	\$509,032	\$668,097
Annual Repairs & Maintenance Savings	\$600	\$65,800	\$160,075	\$160,075	\$160,075
Incentives	\$1,033,931	\$1,251,156	\$1,674,749	\$1,764,403	\$2,069,445
Simple Payback	7.30	6.06	7.94	10.62	26.75

CO2 Light Reduction – Optimize the existing water-cooled and natural gas systems

CO2 Mid Reduction: WC + VRF - Retain water-cooled equipment (FL 7-12) + VRF (FL 3-6)

CO2 High Reduction: VRF – Whole building VRF

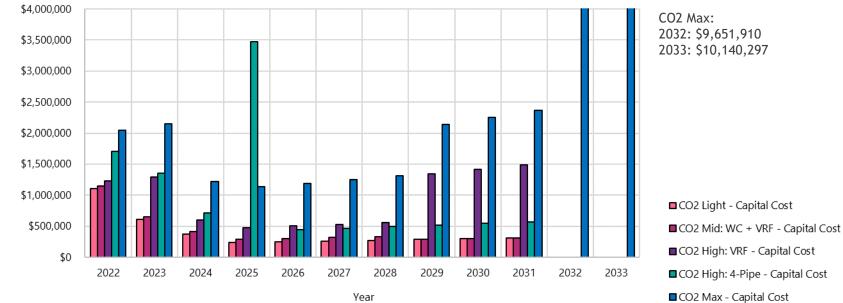
CO2 High Reduction: 4-Pipe – Centralized 4-pipe heat pump

CO2 Max Reduction – VRF + Envelope Measures

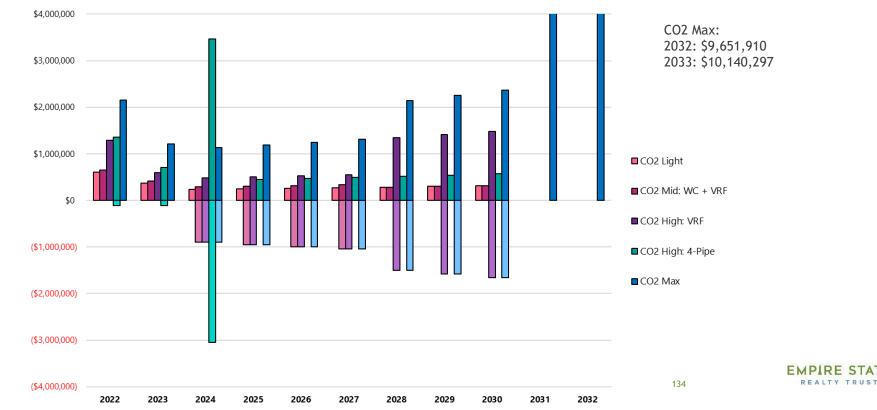
EMPIRE STATE

Recommended Package - CO2 High VRF

- Upgrading controls for existing systems provides significant immediate carbon savings and reduces risks of not meeting targets on time since many existing systems are fairly new and while their replacements drive a critical component of carbon emissions reductions, more efficient operation of existing systems will have payback within the remaining useful life of those systems
 - > Optimization of cooling tower pumping and fan controls for condenser water system serving floors 7-12
 - Electronic radiator valves and BMS tie into VAV boxes
- This package plans for replacement of existing self-contained air and water-cooled systems with hybrid VRF heat pumps at minimal incremental cost at the time of tenant fit outs
 - Retaining water-cooled systems long term is not recommended because it serves only half of the building and requires a large central heat pump to provide heating to existing water-cooled systems
 - Limited market for through-wall air-cooled units which struggle to conform with forthcoming energy codes; in contrast VRF systems are offered by multiple manufacturers with robust warranties
 - ▶ VRF systems are very efficient and allow for on-floor heat recovery:
 - ► Lower distribution energy required water/refrigerant is the medium used, not air, up to the space served
 - ▶ Each zone produces the volume and temperature of air required to satisfy the load in that specific zone
 - ▶ Allows heat recovery to heat perimeter zones using heat produced from cooling interior zones
 - ▶ Generally more energy efficient due to multiple inverter driven compressors
 - > Allows decoupling of outdoor air and conditioning air resulting in proper zone ventilation and improved air quality


1333 Broadway Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget


Annual Capital Cost per Package

Capital Cost - All Packages

Capital Cost (\$)

Annual Incremental Capital Cost vs. Base Cost per Package

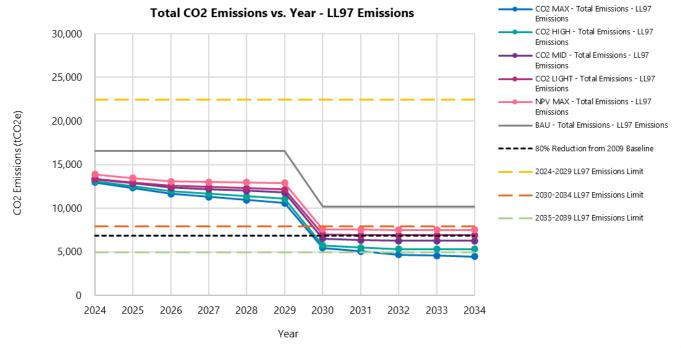
S ATE

Total Capital Costs - Base Cost & Incremental

1333 Broadway Next Steps - 2022 Projects

The recommended 2022 measures are focused on control measures that have a short payback and will enable energy reduction opportunities in the future.

Project	2022 Total Cost	Anticipated Incentives (\$)	Total 2022 Cost w/ Incentives (\$)	Energy Cost Savings
DDC VAV boxes & BMS Radiator Valves, Setpoints, Steam pressure	\$364,131	\$142,875	\$221,256	\$53,194
Outside Air Flow Control & Demand Controlled Ventilation	\$155,100	\$47,693	\$107,407	\$12,234
Retail Equipment BMS	\$165,000	\$98,390	\$66,610	\$40,056
Radiator Trap Audit & Replacements	Included in LL87 Compliance Budget	-	-	\$6,000
Cooling Tower Optimization	\$275,000	\$82,500	\$192,500	\$20,876
Total	\$959,231	\$371,457	\$587,773	\$132,360


DEALTY TRUS

Empire State Building

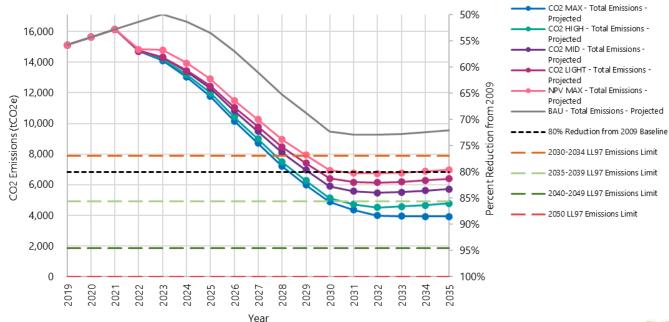
Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, LL97 Grid Coefficients


BAU does not achieve 2030 LL97 compliance; NPV Max and above packages achieve 2030 LL97 compliance

EMPIRE STATE

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Static Grid Scenario

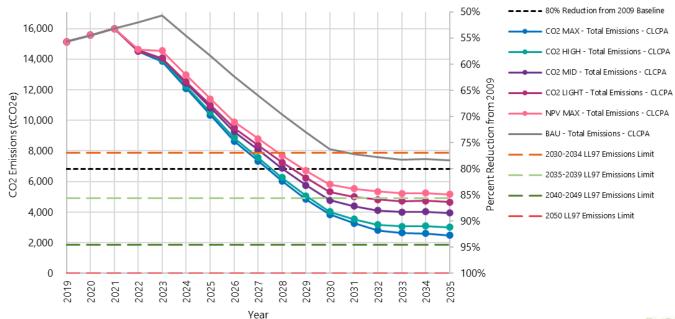
No packages would meet 80% reduction from 2009 baseline by 2030; No packages would achieve 2030 LL97 compliance on time; CO2 Max achieves 2030 compliance in 2033



Total CO2 Emissions vs. Year - Static Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, Projected Grid Scenario

CO2 Light and above packages would meet 80% reduction from 2009 baseline by 2030; Only CO2 High and above packages would achieve 2035 LL97 compliance



Total CO2 Emissions vs. Year - Projected Grid Scenario

Projected Annual Carbon Emissions - Revised LL97 Emissions Limits, CLCPA Grid Scenario

All packages meet 80% reduction from 2009 baseline by 2030; CO2 Light and above packages meet 2035 LL97 compliance

Total CO2 Emissions vs. Year - CLCPA Grid Scenario

EMPIRE STATE

Percent Carbon Emissions Reductions - <u>All Grid Scenarios</u>

STATIC GRID SCENARIO

	2007 - 2030	2007 - 2035	2019 - 2030	2019 - 2035
CO2 Max	-73.2%	-78.1%	-39.5%	-50.6%
CO2 High	-71.8%	-73.3%	-36.3%	-39.7%
CO2 Mid	-69.4%	-70.3%	-30.9%	-32.9%
CO2 Light	-68.1%	-68.6%	-28.0%	-29.2%
NPV Max	-65.9%	-66.2%	-23.0%	-23.6%

No packages would meet 80% reduction from 2009 baseline by 2030;

No packages would achieve 2030 LL97 compliance on time; CO2 Max achieves 2030 compliance in 2033

PROJECTED GRID SCENARIO

	2007 - 2030	2007 - 2035	2019 - 2030	2019 - 2035
CO2 Max	-85.6%	-88.5%	-67.6%	-74.1%
CO2 High	-84.9%	-86.0%	-65.9%	-68.4%
CO2 Mid	-82.6%	-83.1%	-60.7%	-61.9%
CO2 Light	-81.0%	-81.1%	-57.1%	-57.3%
NPV Max	- 79.4 %	-79.3%	-53.5%	-53.3%

CO2 Light and above packages would meet 80% reduction from 2009 baseline by 2030;

Only CO2 High and above packages would achieve 2035 LL97 compliance

CLCPA GRID SCENARIO

	2007 - 2030	2007 - 2035	2019 - 2030	2019 - 2035
CO2 Max	-88.7%	-92.7%	-74.5%	-83.6%
CO2 High	-88.1%	-91.2%	-73.2%	-80.1%
CO2 Mid	-85.9%	-88.3%	-68.1%	-73.7%
CO2 Light	-84.2%	-86.2%	-64.3%	-68.7%
NPV Max	-82.7%	-84.6%	-61.0%	-65.3%

All packages meet 80% reduction from 2009 baseline by 2030;

CO2 Light and above packages meet 2035 LL97 compliance

EMPIRE STATE

REALTY TRUST

Empire State Building Case Study

Energy Modeling

ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

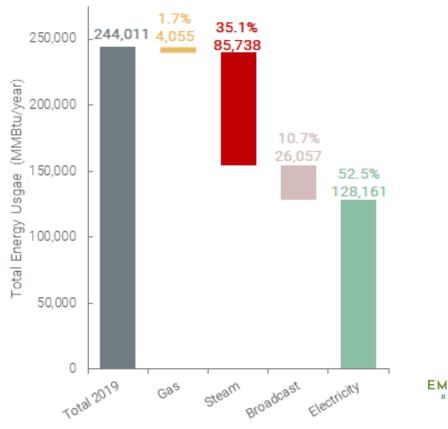
Empire State Building - Current Building Systems

- Offices and base building up to floor 79
 - Steam radiators district steam
 - VAV chilled water AHUs
 - Electric drive centrifugal chillers located in the cellar separately serving three pressure zones with a common condenser water system
 - Steam chillers as backup only
- Retail
 - Water-cooled DX
- 80th floor and above
 - Multiple air-cooled chillers serving multiple systems including observatory
 - Some self-contained air cooled DX in some broadcast areas

143

2019 Energy Breakdown by Utility

District steam used for heating makes up 35.1% of energy usage


Electricity + Broadcast

- ▶ 63.2% of energy usage
- ▶ 74.0% of CO2e emissions

District Steam

- ▶ 35.1% of energy usage
- > 24.6% of CO2e emissions
- Steam Factor: 1,195 kBtu/Mlb

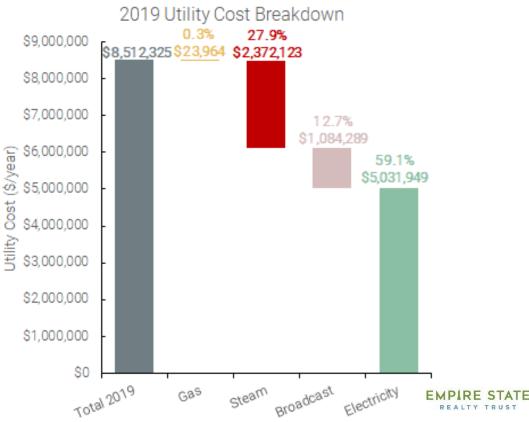
2019 Energy Breakdown

2019 <u>CO2e Emissions</u> Breakdown by Utility

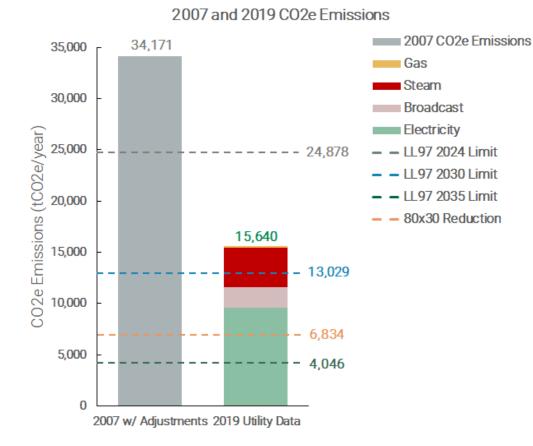
District Steam has lower associated emissions than electricity

Electricity - 256.0 tCO2e/GWh 2019 CO2e Emissions Breakdown 1.4% 24.6% 15,640 215 16.000 3,852 District Steam - 153.3 tCO2e/GWh (LL97) 14,000 Based on 0.00004493 tCO2e/kBtu 12.5% C02e Emissions (tC02e/year) 000'9 000'8 000'9 000'9 (LL97) 1,958 61.5% 9,615 4,000 2,000 0 2019 Utility Data Broadcast Electricity steam Gas

2019 Operational Cost Breakdown by Utility


District Steam is cheaper than electricity & therefore makes up a smaller portion (27.9%) of utility costs

Electricity + Broadcast

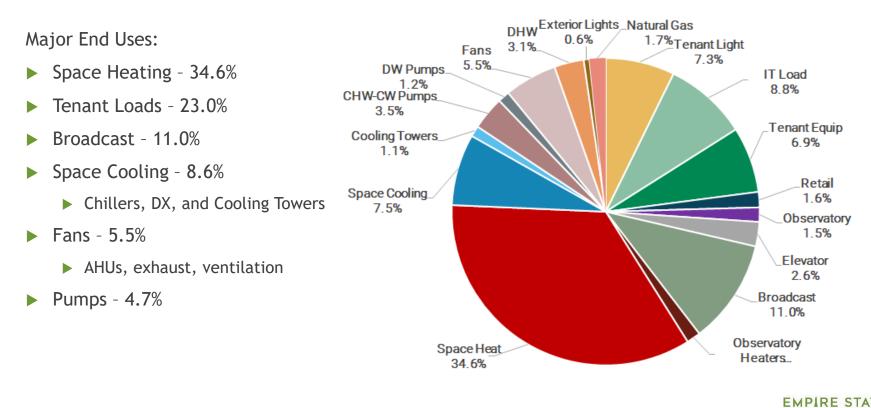

- ▶ 71.8% of operational costs
- 63.2% of energy usage

District Steam

- > 27.9% of operational costs
- ▶ 35.1% of energy usage

ESB Current Status for LL97 and 80x30 Metrics

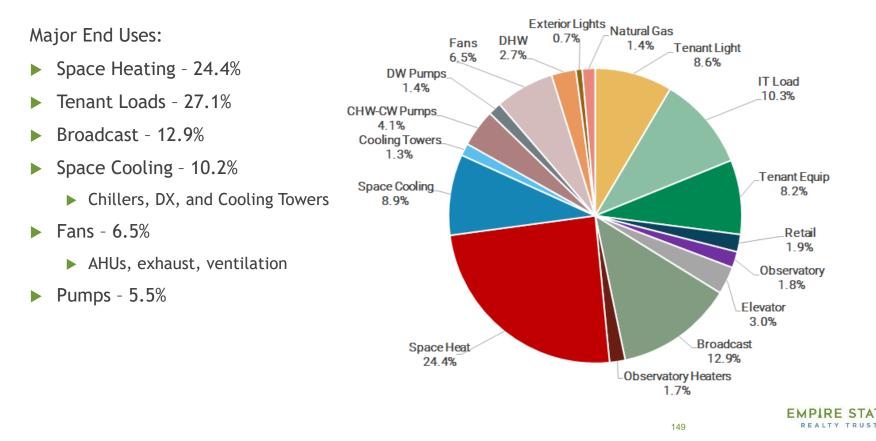
Key Takeaways:


- Building meets 2024 limit of 24,878 tCO2e/year
- 17% reduction is required to meet LL97 2030 targets
- 74.1% reduction is required to meet LL97 2035
 - Building + grid improvements
- 54.0% CO2e reduction from 2007 to 2019
 - 61% building efficiency measures
 - ESB1.0 SOW
 - Broadcast reduction

147

2 39% 2007 to 2019 grid improvements

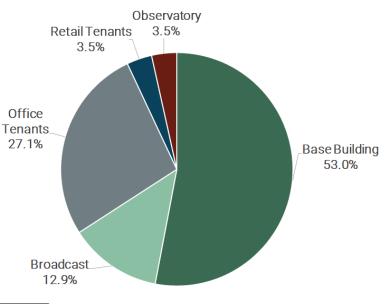
ESB Energy Model: 2019 Energy Breakdown by End-Use


Spacing heating accounts for 34.6% of the total 2019 energy usage

REALTY TRUS

ESB Energy Model: 2019 CO2e Emissions Breakdown by End-Use

Spacing heating accounts for 25% of the total 2019 CO2e emissions



ESB Energy Model: 2019 CO2e Emissions Breakdown by User

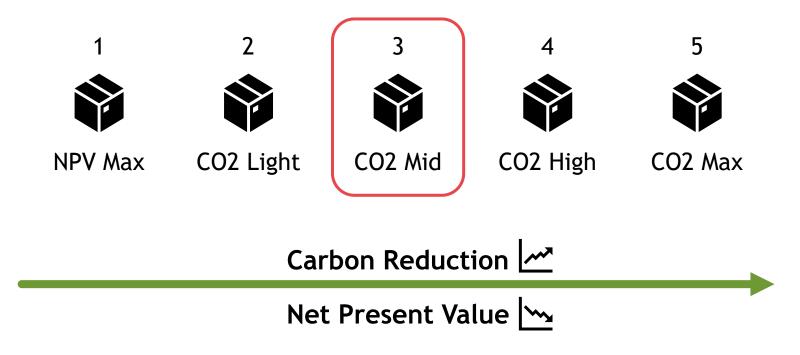
Office and retail tenants account for ~31% of total 2019 CO2e emissions

Base Building includes:

- All district steam heating
- Central cooling plant equipment
- All Office Tenant AHUs
- Elevators
- Lobby HVAC unit
- BOH lighting and equipment

Restaurants are high energy users

Space Type	Square F	ootage	Energy	CO2e	Energy Intensity	Carbon Intensity
Space Type	SF	%	mmBtu	tCO2	(kBtu/SF/year)	lbs/SF/year)
Office Tenants	2,617,184	95%	56,355	4,025	21.5	3.4
Retail Tenants	66,063	2%	9,511	757	144.0	25.2
Observatory	71,800	3%	5,945	454	82.8	13.9


150

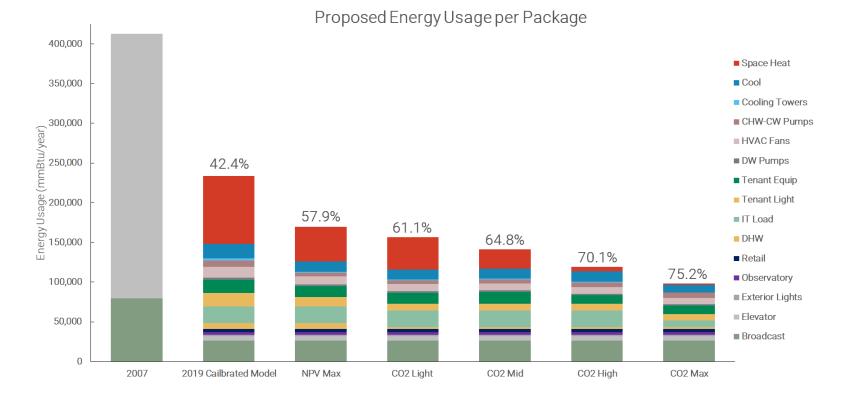
Empire State Building Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

Five packages of ECMs developed to optimize NPV and CO2 reductions

ECM Phases & Implementation Timeline

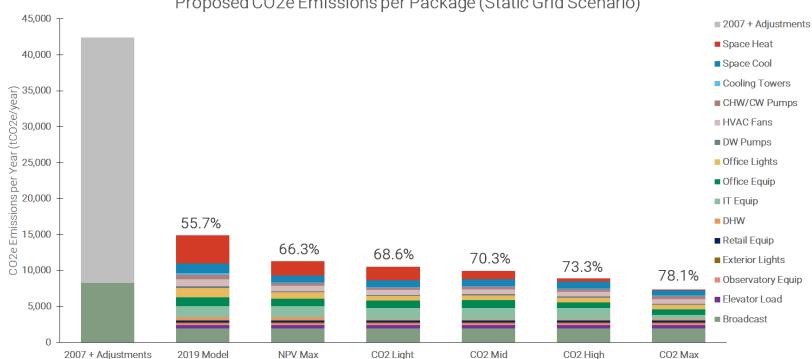
E	NERGY EFFICIENCY MEASURES							IMF	PLEMENTA	TION TIMELI	NE						
Phase	Potential Measures	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Baseline	2019 Baseline	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phase 1A	TX Optimization	0%	100%	100%													
Phase 1B	1st Floor Lobby Air Distribution Optimization	0%	100%	100%													
Phase 1C	All Phase 1C Measures: Setpoints	0%	100%	100%													
Phase 1D	All Phase 1D Measures: Central Plant Optimization	0%	100%	100%													
Phase 1E	All Phase 1E Measures: Steam Optimization	0%	100%	100%													
Phase 1F	All Phase 1F Measures: Retail Optimization	0%	100%	100%													
Phase 1G	Eliminate Observatory Electric Heaters	0%	100%	100%													
Phase 2A	All Phase 2A Measures: Airside Controls Optimization	0%	20%	40%	60%	80%	100%	100%									
Phase 3A	Common Area/BOH Lighting Upgrades	0%		100%	100%												
Phase 3B	Domestic Water Pumps VFDs	0%		100%	100%												
Phase 3C	Air Distribution Optimization for Elv. Rooms	0%		100%	100%												
Phase 4A	Kitchen Hood Exhaust Fan Control	0%		20%	40%	60%	80%	100%	100%	100%	100%	100%	100%				
Phase 5A	Tenant Design Standards & Engagement	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5B	Plug Load Controls	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5C	Tenant Lighting Upgrades	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5D	Daylighting Film	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5E	Optimize IT Equipment	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5F	IT Cooling Optimization	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5G	BIPV	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5H	Wall Insulation	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5I	Window U-value	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5J	Envelope PCM	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 5K	All Phase 5K Measures: Steam Phase- Out	0%		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%				
Phase 6A	Optimize Economizer PFHX Connections	0%				20%	40%	60%	80%	100%	100%						
Phase 6B	High Capacity Geothermal	0%				20%	40%	60%	80%	100%	100%						
Phase 6C	Retail WC Heat Pumps	0%				20%	40%	60%	80%	100%	100%						
Phase 7A	Airsource Hot Water Heaters	0%				0%	0%	20%	40%	60%	80%	100%	100%				
Phase 8A	Broadcast Heat Recovery	0%						0%	0%	0%	0%	100%	100%				
Phase 9A	All Phase 9A Measures: Co-Located Data Center	0%										20%	40%	60%	80%	100%	100%
Phase 10A	R-22 Chiller Replacement	0%										0%	100%	100%	100%	100%	100%


Empire State Building Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

ECM Package Comparison - Energy

Packages range from 57.9% to 75.2% reduction in total energy from 2007 benchmark

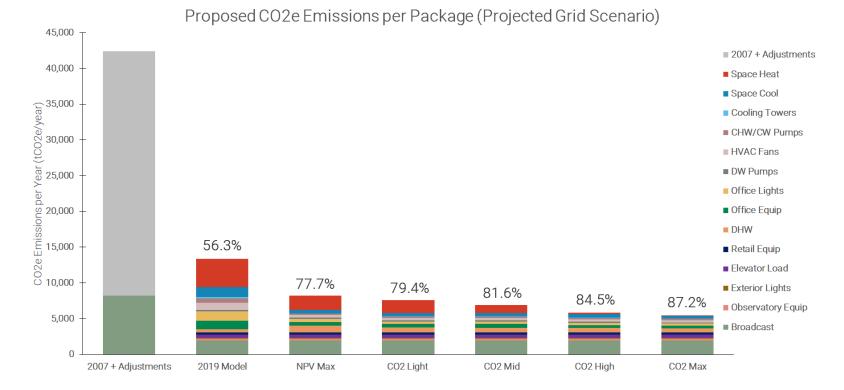


155

EMPIRE REALTY TRUST

Projected CO2 Emissions - Static 2019 Grid Scenario

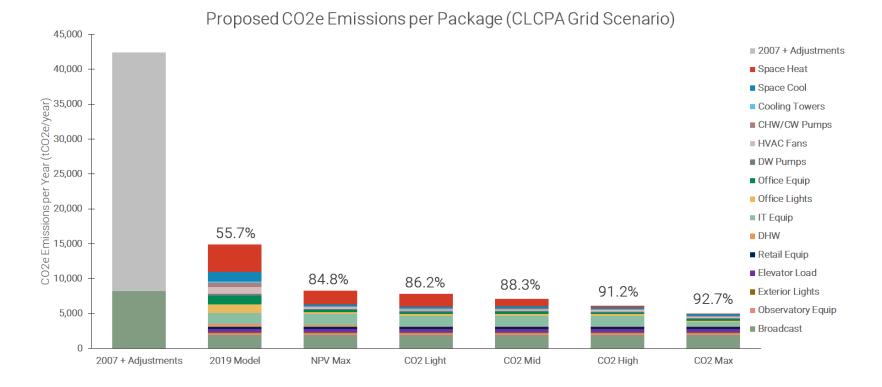
Packages range from 66.3% to 78.1% reduction in total emissions from 2007 benchmark year



Proposed CO2e Emissions per Package (Static Grid Scenario)

EMPIRE S TATE REALTY TRUST

Projected CO2 Emissions - Projected Grid Scenario


Packages range from 77.7% to 87.2% reduction in total emissions from 2007 benchmark year

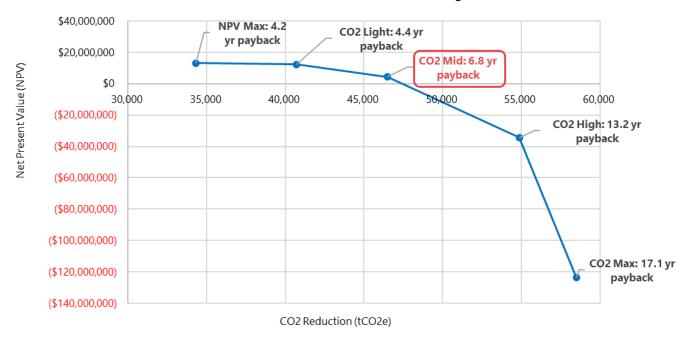
EMPIRE STATE

Projected CO2 Emissions - CLCPA Grid Scenario

Packages range from 84.8% to 92.7% reduction in total emissions from 2007 benchmark year

158

EMPIRE STATE


Empire State Building Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

Net Present Value & Carbon Reduction - <u>CLCPA Grid</u> Scenario

CO2 Mid package is NPV positive with a 6.8 year simple payback

NPV vs. CO2 Reduction over 15 Year Period of Packages (CLCPA Grid Scenario)

LL97 Annual Fines for all Packages

With BAU scenario, ESB will begin seeing fines in 2030 with a static grid. Implementation of CO2 Mid, CO2 High or CO2 Max packages will eliminate all fines for CLCPA grid scenario.

					LL97	ANNUAL FIN	ES								
		CLCPA Gri	d Scenario			Projected G	irid Scenario		Static Grid Scenario						
Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine w/ Long Term Limit	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine w/ Long Term Limit	Fine Avoidance due to ECM Packages	Total Fine from 2024- 2029	Total Fine from 2030- 2034	Annual Fine w/ Long Term Limit	Fine Avoidance due to ECM Packages			
2019 Baseline	\$0	\$0	\$933,383	-	\$0	\$0	\$1,521,432	-	\$0	\$563,332	\$2,970,882	-			
NPV Max	\$0	\$0	\$323,653	\$609,730	\$0	\$0	\$811,422	\$710,010	\$0	\$0	\$2,013,696	\$957,186			
CO2 Light	\$0	\$0	\$183,593	\$749,790	\$0	\$0	\$646,850	\$874,582	\$0	\$0	\$1,788,708	\$1,182,174			
CO2 Mid	\$0	\$0	\$0	\$933,383	\$0	\$0	\$460,908	\$1,060,524	\$0	\$0	\$1,636,921	\$1,333,960			
CO2 High	\$0	\$0	\$0	\$933,383	\$0	\$0	\$196,163	\$1,325,269	\$0	\$0	\$1,362,970	\$1,607,912			
CO2 Max	\$0	\$0	\$0	\$933,383	\$0	\$0	\$0	\$1,521,432	\$0	\$0	\$918,005	\$2,052,877			

*The 2035 GHG emissions limit has not yet been defined and calculations are based on long-term LL97 80% reduction limits.

Recommended Packages - CO2 Mid

	NPV Max	CO2 Light Reduction	CO2 Mid Reduction	CO2 High Reduction	CO2 Max Reduction
NPV TOTALS	\$13,176,520	\$12,256,879	\$4,257,513	(\$34,389,091)	(\$123,592,207)
Total Capital Cost*	(\$21,734,293)	(\$26,237,454)	(\$40,672,466)	(\$106,351,022)	(\$244,192,654)
Landlord Incremental Capital Cost*	(\$16,046,317)	(\$17,185,225)	(\$32,190,237)	(\$42,885,993)	(\$178,657,625)
Tenant Incremental Capital Cost*	(\$5,687,976)	(\$9,052,229)	(\$8,482,229)	(\$63,465,029)	(\$65,535,029)
Total Incremental Capital Cost*	(\$21,734,293)	(\$26,237,454)	(\$40,672,466)	(\$106,351,022)	(\$244,192,654)
Annual Energy Cost Savings	\$2,564,701	\$3,197,550	\$3,701,538	\$6,012,886	\$7,857,253
Annual Repairs & Maintenance Savings	\$522,001	\$546,001	\$546,001	\$1,003,011	\$5,486,271
Incentives	\$8,615,851	\$9,730,286	\$11,687,261	\$13,410,330	\$16,325,328
Simple Payback	4.25	4.41	6.82	13.25	17.08

NPV Max - Includes all ECMs that are NPV positive

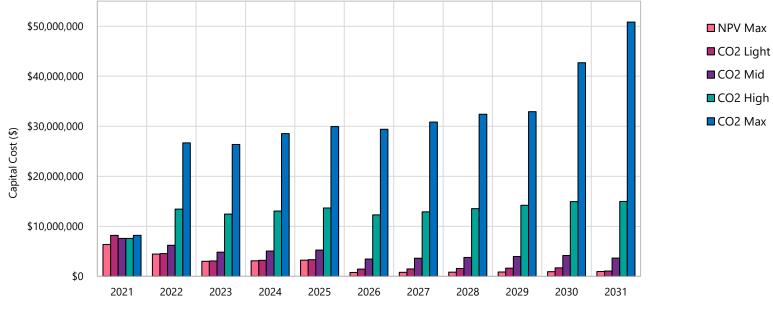
CO2 Light Reduction – Includes all ECMs that are NPV positive and a few essential ECMs that are NPV negative - electrification of DHW only CO2 Mid Reduction – Includes a mixture of ECMs that are NPV positive/negative – DHW electrification and partial HVAC electrification

CO2 High Reduction – Includes most ECMs besides the measures that are extremely NPV negative - complete electrification CO2 Max Reduction – Includes all ECMs studied

*Excluding construction escalation costs

Recommended Package - CO2 Mid

- This package includes many straightforward measures to be implemented at the time of tenant lease turnover or renewal.
- This package includes partial heating electrification which will provide infrastructure to support possible full electrification in the future.
- While less aggressive packages meets the 80% reduction goal, choosing a more aggressive set of measures with decent payback and still positive NPV provides insurance against delayed implementation, for example due to renewing tenants choosing not to refresh their spaces in ways that facilitate key ECMs, while achieving compliance with the average long term LL97 limit



Empire State Building Case Study

Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Capital Expenditure and 2022 Budget

Annual Capital Cost per Package

Annual Capital Costs for All Packages

Year

ESB Next Steps - 2022 Projects

The recommended 2022 measures are focused on control measures that have a short payback and will enable energy reduction opportunities in the future.

Project	2022 Total Cost	Anticipated Incentives (\$)	Total 2022 Cost w/ Incentives (\$)	Energy Cost Savings
Chiller Sequence of Operations	\$450,000	\$156,926	\$293,074	\$55,903
Steam Improvements	\$1,145,000	\$0	\$1,145,000	\$62,434
Perimeter Heating Control by BMS	\$313,500	\$109,171	\$204,329	\$11,708
AHU Fan Alerton Control Conversion	\$502,700	\$96,450	\$406,250	\$40,092
TX Optimization	\$41,800	\$38,000	\$3,800	\$120,182
ERV Addition	\$1,155,000	\$346,500	\$808,500	\$68,078
Airside Sequence of Operations	\$325,000	\$300,000	\$25,000	\$788,530
Airside Retrocomissioning	\$405,704	\$27,662	\$378,042	\$67,188
Integration of Lighting with BMS	\$60,000	\$19,800	\$40,200	\$0
Heating to AHUs	\$1,045,000	\$282,734	\$762,266	\$49,460
Steam Phase-Out Tenant Perimeter Systems	\$2,392,500	\$1,840,558	\$551,942	\$538,377
Kitchen Hood Exhaust Fan Control	\$38,500	\$11,550	\$26,950	\$3,497
Total	\$7,874,704	\$3,229,351	\$4,645,353	\$1,805,448

REALTY TRUST

Overview of Case Study

Executive Summary Building Case Study Energy Modeling ECM Phasing and Packaging Energy and Carbon Emissions Results Financial Analysis and Recommendations Next Steps Summary & Lessons Learned

EMPIRE STATE

Summary of Building Carbon Reduction Recommendations

250 W 57th Street: CO2 Mid Reduction Package

- Includes near-term (2023) installation of a 300-ton heat pump to increase cooling plant capacity and resiliency, followed by installation of an additional 500-ton heat pump at the time of chiller end-of-life (2030). Electrification of heating provides significant savings and is financially viable due to planned capital expenditure for chiller & boiler replacements
- > At tenant fit out VAV reheat systems are tied into new heating hot water riser
 - Convert existing CV to VAV
 - Add reheat coils to each VAV for heating electrification

1350 Broadway: CO2 Mid Reduction Package

- Includes optimization of existing chiller plant, conversion of constant volume systems to optimized VAV systems, and core toilet exhaust energy recovery
- Heating electrification is not required to meet the average long term LL97 limits and is not financially viable within study period due to age of chiller (steam to electric conversion in 2013)

1359 Broadway: CO2 Mid Reduction Package

Includes replacement of existing self-contained DX air-cooled systems with VRF heat pumps at the time of tenant fit outs. This is financially viable with nominal incremental cost to replace existing equipment. Through-wall air-cooled DX units currently specified (United Cool Air) will be discontinued by the manufacturer at the end of 2021.

Summary of Building Carbon Reduction Recommendations (Continued)

1333 Broadway: CO2 High VRF Reduction Package

- Optimization of existing water-cooled systems is recommended in the near term, but these systems should not be retained long term.
- Includes replacement of existing self-contained air-cooled and water-cooled systems with VRF heat pumps at minimal incremental cost versus end-of-life replacement of existing systems in kind at the time of tenant fit outs

Empire State Building: CO2 Mid Reduction Package

- Includes many straightforward measures to be implemented at the time of tenant lease turnover or renewal, as well as base-building optimization and heat recovery measures
- Includes partial heating electrification which will provide infrastructure to support possible full electrification should this become economically viable in the future
 - ▶ Electrification of heating at AHUs using HW coils and a central heat pump is included

Lessons Learned

- Don't let planned CapEx be a missed opportunity, do not replace in kind
 - When opportunities or needs arise to replace equipment, utilize the opportunity to promote carbon and energy efficiency with good ROI due to low incremental costs compared to replacement in kind.
 - ▶ 250 W 57th Street heating electrification
 - 1333 and 1359 Broadway VRF
 - The inverse is also true. If major equipment is not due for replacement for 20 years, carbon and energy efficiency improvements may not financially justify early replacement.
 - ► 1350 Broadway heating electrification
- Central systems may present more opportunities for optimization based on automation and controls sequences
 - 1333 Broadway condenser water system
 - Empire State Building CHW pumping

- Consistent rollout of high-performance standards is crucial
 - Key internal and external service providers (fit out designers, controls vendors, maintenance contractors, lease negotiators) require technical oversight to ensure all their work supports energy and carbon efficiency goals.
 - Small deviations of tenant designs from energy code and tenant design guidelines can build up to significant impediments to achieving carbon savings.
 - Consider long-term ROI and operational consequences of first-cost decisions on all projects. Small decisions add up to big impact.

EMPIRE STATE

Appendix

CLCPA Performance

_			All values in	GWh			
Cal. Year	Load	Net Imports	NYISO Gen	Renewable Percentage	CO ₂ Free Percentage	MT/GWh or g/kWh	% of 2019
2019	155,832	23,128	134,313	26.1%	59.4%	256.0	100%
2023	150,544	23,128	129,266	28.9%	50.6%	296.2	116%
2025	144,962	15,359	131,470	38.7%	60.1%	227.8	89%
2030	154,097	10,673	145,632	61.6%	81.3%	78.5	31%
2035	181,560	10,673	173,211	79.5%	83.2%	93.4	36%
2040	212,596	10,673	201,931	84.5%	98.7%	9.3	4%

CLCPA Goals Met Scenario

Projected Grid Performance

_			All values in	GWh			
Cal.	Lood	Net	NYISO	Renewable	CO ₂ Free	MT/GWh	% of
Year	Load	Imports	Gen	Percentage	Percentage	or g/kWh	2019
2019	155,832	23,128	134,313	26.1%	59.4%	256.0	100%
2023 ¹	149,268	20,018	131,136	33.1%	51.1%	302.7	118%
2025 ²	144,962	20,018	127,762	35.3%	53.8%	272.3	106%
2030 ³	154,097	13,359	143,750	56.7%	73.0%	119.3	47%
2035 ⁴	181,560	11,257	173,720	59.6%	72.4%	129.5	51%
2040 ⁵	212,596	11,257	208,076	66.6%	77.5%	101.1	40%

1 - 2023: Indian Point Retires, growth in upstate wind and solar

- 2 40% of 2025 solar goal, CHPE, Empire & Sunrise Wind are not complete, onshore wind increased 25% from 2019 actuals Also retired all FO6, FO2 & Kerosene generation, replacing with continued operations of NG fueled generation.
- 3 Wind Goals: Empire & Sunrise online, 4,500 of 9,000 MW of 2035 Offshore Goals, upstate wind increased to 9,907 GWh Solar: 100% of 2025 Upstate goal of 6,000 MW, 100% of 2025 City Bldg. 100 MW goal

CHPE included at 95% capacity factor of 1,250 MW

4 - 7,500 of 9,000 Mw of 2035 Offshore Goal, upstate wind increased to 12,384 GWh

Solar: total solar output up to 16,788 GWh

- Imports: PJM at 25% and ISO-NE at 50% of 2019 actuals, PJM & ISO-NE grid coef. drop to 75% of 2019 actuals
- 5 Offshore wind at 10,000 MW and 37,230 GWh, upstate wind increased to 19,815 GW

Solar: total solar output up to 33,436 GWh

Imports: PJM at 25% and ISO-NE at 50% of 2019 actuals, PJM & ISO-NE grid coef. drop to 70% of 2019 actuals

173

Several HVAC system implementation timelines were initially considered

There are several timing options available for the installation of new heat pumps and the associated infrastructure (i.e., new HHW riser and connections to VAV reheat distribution on tenant floors)

- A. A fraction of the final heat pump capacity (300 TR) may be installed in the short term to assuage concerns about limited cooling capacity and improve the plant resiliency, followed by installation of the remainder of the capacity at the chiller end-of-life.
- B. The installation of the new heat pump plant may be delayed until the end-of-useful-life of the existing chillers *if additional capacity is not needed immediately* once the associated cooling tower equipment has aged as well (circa 2030). There are two further options for timing of the installation of the HHW riser and connection to VAV reheats:
 - 1. HHWS riser may be installed at same time that the heat pump plant is installed. This results in a delayed electrification timeline and associated carbon emissions reductions, but it also delays the need for significant capital expenditure
 - 2. HHW riser may be installed immediately, prior to heat pump installation, and connected to the existing boiler through a steam-to-water HX which will produce hot water. Tenant distribution systems may begin to be converted to VAV reheat and connected to this riser at tenant lease roll. This has the benefit of immediate partial electrification once the heat pump comes online, although it requires immediate capital expenditure with a delay in significant annual cost savings

Option B-2 requires high capital expenditure with limited energy cost savings until heat pump is installed

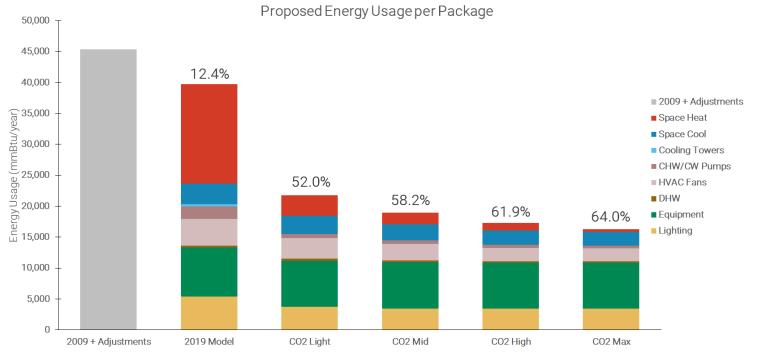
ENERGY	CONSERVATION MEASURES (ECMS)								IMPL	EMEN	ΤΑΤΙΟ	N TIME	LINE							
Phasing	Short Name	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
	Immediately Install 300-ton Air-Water Heat Pumps and Add Complete Plant Capacity at Chiller End-Of-Life	0%	38%	38%	38%	38%	38%	38%	38%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Option A	Immediately Install Heating Hot Water Riser & Branch Taps on Tenant Floors & Connect to Boiler System	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%									100%
	Immediately Begin Install of VAV Reheat Coils on Tenant Office Floors	0%		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%		100%
	Replace Chillers/Cooling Towers with Central Air-Water Heat Pump in 2030	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Option B-1	Install Heating Hot Water Riser & Branch Taps on Tenant Floors in 2030 & Connect to Remaining Boiler	0%								100%	100%									100%
	Begin Install of VAV Reheat Coils on Tenant Office Floors Starting in 2030	0%									11%	22%	33%	44%	56%	67%	78%	89%	100%	100%
	Replace Chillers/Cooling Towers with Central Air-Water Heat Pump in 2030	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Option B-2	Immediately Install Heating Hot Water Riser & Branch Taps on Tenant Floors & Connect to Boiler System	0%	100%							100%	100%									100%
	Immediately Begin Install of VAV Reheat Coils on Tenant Office Floors	0%		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%		100%

175

EMPIRE

S

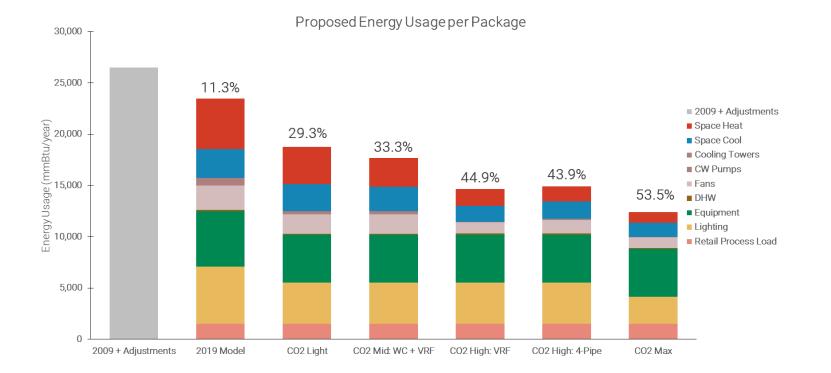
REALTY TRUST


Option B-2 requires high capital expenditure with limited energy cost savings until heat pump is installed

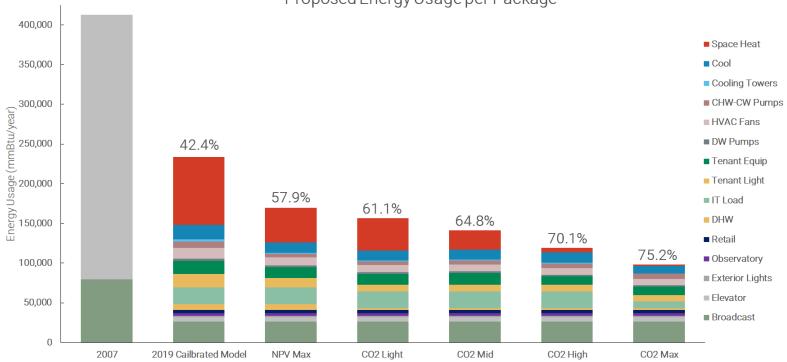
ENERGY	CONSERVATION MEASURES (ECMS)								IMPL	EMEN	TATIO	N TIME	LINE							
Phasing	Short Name	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
	Immediately Install 300-ton Air-Water Heat Pumps and Add Complete Plant Capacity at	0%	38%	38%	38%	38%	38%	38%	38%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Option A	Immediately Instal Seating Hot Water Riser & Branch Taps CO22 Fors & Connect to	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%
	Immediately Begin Install of VAV Reheat Coils on Tenant Office Floors	0%		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	87%	93%	100%		100%
	Replace Chillers/Cooling Towers with Central	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Option B-1	Install Heating Hot Water Riser & Branch Taps on Trial 1997s MCP & Connect to Remaining Boller	0%								100%	100%									100%
	Begin Install 9/2/ Fenergins on Tenant Office Floors Starting in 2030	0%								0%	11%	22%	33%	44%	56%	67%	78%	89%	100%	100%
	Replace Chillers/Cooling Towers with Central Air-Water Heat Tamp in 2030	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	100%	100%	100%	100%		100%	100%	100%	100%
Option B-2	Immediately Install Heating Hot Water Riser & Branch Taps on Tenant Floors & Connect to Boiler System	0%	100%	100%	100%				100%	100%	100%	100%	100%							100%
	Immediately Begin Install of VAV Reheat Coils on Tenant Office Floors	0%		7%	13%	20%	27%	33%	40%	47%	53%	60%	67%	73%	80%	07%	93%	100%	100%	100%

176

250 ECM Package Comparison - Energy


Packages range from 52.0% to 64.0% reduction in total energy from 2009 + Adjustments benchmark year

1333 ECM Package Comparison - Energy


Packages range from 29.3% to 53.5% reduction in total energy from 2009 + Adjustments benchmark year

EMPIRE STATE

ESB ECM Package Comparison - Energy

Packages range from 57.9% to 75.2% reduction in total energy from 2007 benchmark

Proposed Energy Usage per Package