Iconic midtown tower modernizes by recycling heat
As a partner of the Empire Building Challenge, BXP will complete a decarbonization pilot project at 601 Lexington Avenue. The 1.52 million square foot, 59-story, multi-tenant premier workplace in midtown Manhattan was constructed in 1977 and features building systems typical among commercial high-rises of a similar vintage. The innovative measures planned for implementation demonstrate a scalable and replicable decarbonization opportunity within a difficult-to-decarbonize building type.
As part of their demonstration project, BXP will install water-to-water heat pumps to transfer heat from the condenser water loop to secondary water systems. Recovered heat will then be used to offset perimeter heating loads. By deploying existing technology in a novel way, this project creates a thermal network which utilizes heat that would otherwise be rejected to the atmosphere from the building’s cooling system. BXP will reduce the building’s annual steam consumption by over 30% with this innovative thermal system.
BXP is a fully integrated real estate investment trust and is the largest publicly traded developer, owner, and manager of premier workplaces in the U.S. with a portfolio spanning 54.5 million square feet.
Project Status
Planning
Under Construction
Monitoring & Evaluation
Project Highlights
Step 1
Step 1: Examine Current Conditions
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
- New heat source potential
- Efficiency improvements
Asset Conditions
- Carbon emissions limits
- Owner sustainability goals
Market Conditions
- Technology improves
- Policy changes
- Utility prices change
- Fuels phase out
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Existing Conditions
This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.
Click through the measures under “Building After” to understand the components of the building’s energy transition.
Sequence of Measures
2024
2034
Building System Affected
- heating
- cooling
- ventilation
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.