Engineering Solutions

High Rise / Low Carbon Event Series: Take the Heat!

During this High Rise / Low Carbon series program developed to support the Empire Building Challenge (EBC) and other NYSERDA programs, this two-part event series–focused on building decarbonization–features industry experts highlighting projects deploying breakthrough heat recovery solutions across the commercial and multifamily buildings sector. 

Part 1

Take the Heat! Part 1: Geo & Wastewater will showcase approaches to wastewater heat recovery and geothermal heat projects in New York City.

Opening Remarks

Molly Kiick, Project Manager, NYSERDA

Moderator

Greg Koumoullos, Project Manager, Customer Energy Solutions, Con Edison

Presenters

JP Flaherty, Managing Director, Global Head of Sustainability and Building Technologies, Tishman Speyer
Ed Yaker, Treasurer, Amalgamated Housing Cooperative
Mariel Hoffman, Director of Energy Engineering, EN-POWER GROUP

Panelists

Mariel Hoffman, Director of Energy Engineering, EN-POWER GROUP
Jay Egg, President, Egg Geo
JP Flaherty, Managing Director, Global Head of Sustainability and Building Technologies, Tishman Speyer
Ed Yaker, Treasurer, Amalgamated Housing Cooperative

Part 2

Take the Heat! Part 2 will showcase approaches to ventilation and cooling heat recovery. The session will include presentation and discussion by three EBC partner teams: Vornado, with Jaros, Baum & Bolles (JB&B); Brookfield, with Cosentini; and LeFrak, with Steven Winter Associates.

Opening Remarks

Laziza Rakhimova, Energy Efficiency Business Development Manager, Con Edison

Moderator

Mike Richter, President, Brightcore Energy

Presenters

Christopher Colasanti, Associate Partner, JB&B Deep Carbon Reduction Group
David Noyes, Project Executive, Brookfield Properties
Jonathan Da Silva Johrden, Building Systems Director, Steven Winter Associates, Inc.

Panelists

Karen Oh, Vice President, Energy Innovation and Strategy, Vornado Realty Trust
Christopher Colasanti, Associate Partner, JB&B Deep Carbon Reduction Group
David Noyes, Project Executive, Brookfield Properties
Jonathan Da Silva Johrden, Building Systems Director, Steven Winter Associates, Inc.

Source: Building Energy Exchange

Federal Incentives

Federal Commercial Building Incentives

The recent Inflation Reduction Act (IRA), along with the Infrastructure Investment and Jobs Act (IIJA) from 2021, fund multiple programs and tax incentives to improve the energy efficiency of new and existing commercial and public buildings. The 179D tax deduction is revamped and now includes a new pathway for retrofits. Even larger broad greenhouse gas emission reduction programs under the IRA could be used to reduce emissions from commercial buildings. But the programs use a variety of mechanisms to offer varying incentives with varying goals and criteria. This brief summarizes programs that will or could provide significant resources for energy efficiency in commercial and public buildings.

Source: ACEEE

Strategic Decarb 101

Terminology & Definitions

Insights from Empire Building Challenge 

The following are terms commonly used in the building decarbonization universe:

Carbon Neutral Buildings:

Buildings that produce no net greenhouse gas emissions directly or indirectly. Carbon neutrality spans multiple scopes of associated greenhouse gas emissions including:operations on-site and via emissions associated with third parties delivering energy or products to site and embodied carbon emissions from the full lifecycle and production of construction materials. Emissions are often referred to as scope 1, 2 and 3. Essentially, scope 1 and 2 are those emissions that are owned or controlled by a company. Meanwhile, scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or controlled by it.

Coefficient of Performance (COP):

The ratio of the amount of heat delivered from a heat pump over the amount of electrical input. For example, a heat pump has a COP of 5.0, if it can deliver 5 units of heat for one unit of electricity input. A COP of 1.0 is typical for resistance heat (e.g., toaster or hair dryer). 

Facade Overclad:

An additional weather barrier installed overtop an existing facade to increase building envelope energy performance, thermal comfort, and to reduce ongoing building maintenance. 

Heat Recovery/Recycling:

The capture and reuse of waste heat often incorporating thermal storage techniques, see Time Independent Energy Recovery (TIER).

Net Present Value (NPV):

An analysis of project cash flow over a set period which incorporates inflation and the time value of money; the “upfront” lifetime value of a project. A positive NPV yields a Return on Investment (ROI).

On-site Fossil Fuel:

Fossil fuel consumed typically via combustion within a building for the purpose of heating, cooling, domestic hot water production, or power generation.

Return on Investment (ROI):

The ratio between net income and savings from a project investment over a set period. ROI is typically presented as a percentage for the period of one year.

Simple Payback:

Economic benefits yielded from investment in a project. Simple payback is typically presented in the time (e.g. years) it takes to recover an investment, but does not consider variations in cash flow over time or the time value of money.

Strategic Decarbonization Assessment (SDA):

A mid- to long-term financial planning method for building owners to manage carbon emissions and energy use.

Thermal Distribution:

The means by which thermal energy is moved throughout a building. This includes moving heat through various heat transfer mediums including but not limited to water, steam, refrigerant gas, or ducted air.

Thermal Energy Network (TEN):

Infrastructure that enables heat sharing through a number of thermal transfer mediums and between heat customers and producers who extract heat from multiple sources using varied technologies.

Thermal Storage:

The storage of thermal energy for later use, utilizing various mediums and technologies.

Waste Heat:

Heat or cooling which is typically rejected to the air and not recovered. Waste heat sources include sanitary sewer heat, heat rejected from air source heat pumps, cooling tower heat, heat lost from ventilation exhaust, steam condensate return, and underground transportation, among others.

Source: NYSERDA

Engineering Solutions

High Rise / Low Carbon Event Series: Keep the Outside Out

During this High Rise / Low Carbon series program developed to support the Empire Building Challenge and other NYSERDA programs, hear from experts focused on recent innovations in delivering high-performance, low carbon envelope retrofits, an essential keystone for maintaining high quality indoor environments while radically lowering heating and cooling demand to realize a low-carbon future. 

Featuring diverse examples, from the over-cladding of masonry buildings to the re-cladding of curtainwall buildings, this discussion will focus on the technical aspects of high performance envelopes like integrating MEP systems into cladding, but also the ownership structures and cost compression that can result from innovation in this critical space. 

Opening Remarks

James Geppner, Senior Project Manager, Retrofit NY, NYSERDA

Moderator

Todd Kimmel, Regional Specifications Manager, ROCKWOOL North America & Chairperson, Rainscreen Association in North America

Presenters

Abdulla Darrat, President, Renewal Construction Services LLC
Laura Humphrey, Director of Sustainability, L&M Development Partners

Panelists

Abdulla Darrat, President, Renewal Construction Services LLC
Aurimas Sabulis, CEO, Dextall
Erin Fisher, Director of Engineering Services, CANY
John Ivanoff, Associate Principal, Buro Happold

Source: Building Energy Exchange

Tenant Resources

Working Toward Net Zero: Best Practices and Examples to Engage Tenants in Sustainability Webinar

This Urban Land Institute webinar highlights strategies that can be employed by real estate companies to drive sustainability through tenant engagement. The best practices and examples shared by property owners illustrate how sustainability goals can be aligned with tenant engagement strategies. Some strategies explored in this webinar include tenant engagement through green leasing, as well as through collection of data. Panelists speak to their own organization’s experiences, and more broadly, on the importance of integrating sustainability into tenant engagement. 

Source: ULI

Engineering Solutions

High Rise / Low Carbon Event Series: Advanced Ventilation Goes Mainstream

With so many systems poorly installed and with maintenance so often neglected, ventilation systems in previous eras were often seen as the source of problems and little else. But today, a mixture of technological advancements and the migration of products from other markets places highly efficient systems that provide exemplary air quality and comfort within reach of virtually every building. 

The days of balancing indoor air quality against energy use are over, with modern systems decoupling ventilation from cooling, utilizing high performance energy recovery ventilation (ERVs), and dedicated outside air systems (DOAS) that allow for high volumes of fresh air while drastically limiting the loss of heat and humidity. Decoupling ventilation from the heating and cooling systems is a key element of the Resource Efficient Decarbonization (RED) framework and a critical phase in producing low carbon buildings with the highest quality indoor environments. 

During this High Rise / Low Carbon series program developed to support the Empire Building Challenge and other NYSERDA programs, hear from critical leaders in this field as they discuss how these innovative ventilation systems are addressing critical needs across all segments of the building sector, while also providing the foundation for full electrification.

Moderator

Benjamin Rodney, Vice President, Construction, U.S. East Region, Hines

Presenters

Daniel Bersohn, Associate, BuroHappold Engineering
Benjamin Rodney, Vice President, Construction, U.S. East Region, Hines

Speakers

Vinca Bonde, Sales Director, Energy Machines
Grace Kolb,  Mechanical Engineer, AKF Group
Tony Abate, Vice President and Chief Technology Officer, AtmosAir
Miguel Gaspar, Vice President/Group Leader, Loring Consulting Engineers
Dr. Marwa Zaatari, ASHRAE Distinguished Lecturer, Partner at D-ZINE Partners, enVerid Systems Advisory Board Member

Source: Building Energy Exchange

Strategic Decarb 101

A Rational Approach to Large Building Decarbonization

Assessment Tools

Technical Barriers to Decarbonization

Insights from Empire Building Challenge

Large commercial and residential buildings must overcome various hurdles before implementing deep retrofits or capital projects that help achieve building decarbonization. This section addresses technical barriers and questions often faced by building owners and retrofit project developers.

Decentralized Systems and Tenant Equipment

  • Access to Occupied Spaces.
  • Lease Concerns.
  • Regulatory Limitations of Rent Stabilized Apartments.
    • The building owner is required to provide free heat and hot water.
    • No mechanism to recover investment in new systems is necessary to achieve decarbonization.
    • Buildings are capital constrained.
  • Split Incentives (e.g. tenants pay for energy).

Facade and Windows

  • Work must be completed at the end of facade/window useful life; very long useful life.
  • Building codes.
  • Glazing reduction at odds with aesthetic/marketability concerns.
  • Difficult installing with occupied spaces.
  • Reduce Local Law 11 recurring cost via overcladding
    • Aesthetic concerns
    • At odds with historic preservation
    • Capital intensive
    • Lot line limitations
  • Technology Limitations
    • Need higher R-value/inch for thinner wall assembly:
      • Vacuum insulated panels
      • Aerogel panels/batts
      • Zero-GWP blowing agents for closed cell spray foam (nitrogen blowing agent needs to be more widely adopted)

Ventilation

  • Energy Recovery Ventilation (ERV)
    • Space constraints
    • System tie-in point accessibility/feasibility
  • Rooftop Supply Air (Reznor) Unit Alternatives
    • Heat pump alternatives to eliminate resistance heat
    • Combine with ERV
  • HVAC Load Reduction (HLR) Technology
    • Vent or capture exhaust gases
    • Space constraints
    • System tie-in point accessibility/feasibility
  • Central vs. Decentralized Ventilation Systems
  • Direct Outside Air System (DOAS)
    • Modular perimeter ducted air heat pumps:
      • Competition for leasable space
      • Space constraints
  • Ventilation Points-of-Entry
    • Aesthetic concerns
    • Lot line facades/building setbacks
    • Competition with leasable space
    • Space constraints

Heat Pump Limitations

  • Variable Refrigerant Flow (VRF)
    • Fire and life safety concerns about volume of refrigerant gas located within occupied spaces.
  • Regulatory risk from new refrigerant policies
  • PTAC and VTAC
  • Ducted Supply/Exhaust Air Source Heat Pumps
  • Domestic Hot Water
    • Central DHW Systems:
      • Limited domestic production.
      • Performance not confirmed by independent third parties.
      • More demonstration projects needed.
    • Decentralized DHW Systems
  • More open-source interconnection between devices/interoperability is needed to achieve energy distribution flexibility and capacity expansion:
    • Air source that has a manifold connection to interconnect with water source or refrigerant gas distribution.
    • Interconnectivity/simplified heat exchange between refrigerants/water/air, etc.
    • Other options and add-ons.

Steam Alternatives and Barriers

Below are high temperature renewable resource alternatives to district steam. These alternatives are limited and face barriers to implementation due to cost, scalability, and other factors. 

  • Deep Bore Geothermal
  • Renewable Hydrogen
  • Carbon Capture and Sequestration
  • Biomethane
  • Electric Boilers
  • High-temperature thermal storage
  • Hight-temperature industrial heat pumps
  • Waste Heat Capture and Reuse
  • Fission

Barriers to Electrification and Utility Capacity Limitations

Building Electric Capacity Upgrades

  • Electric riser capacity
  • Switchgear expansion
  • New service/vault expansion/point-of-entry space constraints
  • Capacity competition with other electrification needs:
    • Space heat and cooling
    • DHW
    • Cooking
    • Pumps and motors

Local Network Electric Capacity Upgrades

  • Excess Distribution Facility Charges (EDF)
  • Contributions in Aid of Construction (CIAC)

Gas Utility Earnings Adjustment Mechanisms (EAM) focused on System Peak Demand Reductions

  • Partial Electrification concepts achieve deep decarbonization but do not necessarily achieve peak gas demand reductions (debatable)

Total Connected Loads and Peak Demand drive need for capacity upgrades

  • Demand reduction strategies do not obviate capacity limitations unless the utility accepts the solution as a permanent demand/load reduction strategy.
    • Battery Storage:
      1. Fire danger
      2. Space constraints
      3. Electricity distribution limitations
      4. Structural loads
    • Building Automation/BMS/Demand Response:
      1. Cost
      2. Integration limitations; Blackbox software
      3. Microgrid development cost and lack of expertise
    • On-site Generation:
      1. Space constraints
      2. Gas use; Zero carbon fuels availability is non-existent
      3. Structural loads
      4. Pipe infrastructure

Thermal Storage

  • Space constrains
  • Structural loads
  • Technology limitations:
    • Vacuum insulated storage tanks
    • Phase change material (DHW, space heating)

Geothermal (ambient temperature), Deep Bore Geothermal (high temperature) or Shared Loop District Energy Systems provide cooling and heating with lower peak demand than standard electric equipment

  • Building pipe riser limitations; need additional riser capacity:
    • Building water loops are typically “top down” – cooling capacity is typically located at rooftop mechanical penthouses; cooling towers at roof. Some exceptions to this rule
    • Space Constraints
  • Drilling Difficulty:
    • Outdoor space constraints for geothermal wells
    • Difficult permitting
    • Mud and contaminated soil disposal
    • Overhead clearance constraints for drilling in basements/garages 
  • Shared Loop/Thermal Utility Limitations:
    • Requires entity that may operate in public ROWs and across property lines
    • Utilities are limited by regulations for gas, steam or electric delivery versus shared loop media (ambient temperature water).
      1. Only utility entities can provide very long amortization periods
      2. Utilities are best suited to work amid crowded underground municipal ROWs.
  • Deep Bore Geothermal Limitations:
    • Requires test drilling and geological assessment
    • Seismic risk
    • Drilling equipment is very large – more akin to oil and gas development equipment
    • Subsurface land rights and DEC restrictions

Other Energy Efficiency/Conservation Measures with proven/attractive economics (these measures are limited by lack of capital or knowledge)

  • Lighting with lighting controls
  • High-efficiency electrically commutated motors (ECM)
  • Variable Frequency Drives (VFD) on pumps and motors
  • Retro-commissioning tasks and maintenance

Behavioral Modification

  • Staggered work scheduling
  • Telework

Submetering and billing, potentially creates split incentive between landlord and tenant

Crossover Device or “Magic Box” Technology

These include multi-purpose technology for heating, cooling, heat exchange and ventilation, filtration, and/or domestic hot water.

  • Domestic production and supply chain is limited.
  • Small players operating in this space.
  • Technology is not tested over long operational periods (providers include: Daikin, Nilan, Zehnder, Drexel und Weiss, Minotair, Build Equinox, Clivet).

Zero Carbon Fuel Limitations

  • Green Hydrogen
  • Renewable Natural Gas

Low-Carbon Fuels

  • Biofuel
  • Biomethane

Renewable Energy Procurement Limitations

  • REC Purchasing:
    • NYSERDA monopolizes REC purchasing from renewable energy projects.

Pending Carbon Trading Programs Limitations

  • Deployment timeline is highly uncertain.
  • Price per ton of carbon is highly uncertain and will likely be volatile/low based on previous emissions trading scheme outcomes.