Case Study

The Victory

Energy conservation analysis at midtown tower

The Victory is a 45-story luxury residential tower built in 2004 in New York City. The tower is comprised of 417 units and amenities include a resident lounge, outdoor terrace, fitness center, and laundry facilities. This property is part of the Empire State Realty Trust (ESRT) portfolio and was studied along with two other properties to develop a deep energy retrofit case study. The intent of the study was to go beyond the goals of a typical study and investigate measures to achieve net zero performance and study high and low impact ECMs such as controls and sensors, tenant engagement, and water efficiency.

Lessons Learned

Switching from steam or gas heating coils to an air-cooled heat pump system in building HVACs provides cooling, heating, and significantly reduces carbon emissions.

Lessons Learned

Buildings with PTAC units using steam coils can upgrade to PTHP units for electrified space heating without needing additional electrical panel upgrades, as the existing infrastructure already supports cooling.

Lessons Learned

Optimizing domestic hot water heating to the maximum capacity of the existing electrical infrastructure can cover 60% to over 80% of the load. Peak demands can be met using existing boilers or a smaller dedicated boiler, enhancing energy efficiency and reducing carbon emissions without expensive upgrades to electric services.

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
  • System Failure
  • New heat source potential
  • Efficiency improvements
Asset Conditions
  • Capital event cycles
  • Carbon emissions limits
  • Building codes
  • Owner sustainability goals
Market Conditions
  • Policy changes
  • Fuels phase out

ESRT’s working definition of net zero existing buildings is that by drastically reducing building operational emissions, partnering with a renewably sourced grid aligned with CLCPA, and offsetting residual emissions through clean energy generation and/or RECs through a transparent accounting and reporting process, net annual building operational carbon emissions are equal to zero. By 2035, the ESRT portfolio will target net zero carbon through an 80% operational carbon reduction, achieved through a combination of energy efficiency measures and a more renewable sourced grid, as well as a 20% offset with off-site clean energy generation and RECs. 

The Victory is located in New York City and subject to LL97 compliance regulations.



Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Existing Conditions

This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.

Click through the measures under “Building After” to understand the components of the building’s energy transition.

Sequence of Measures

2024

2025

2026

2027

2034

Building System Affected

  • heating
  • cooling
  • ventilation
The Victory building graphic before.
The Victory building graphic after
Add mixing valve and temperature sensor to the DHW system to improve efficiency and control.
Replace and add additional pumps to domestic cold water distribution system to optimize flow for different zones.
Add occupancy control to ventilation system by adding CO2 sensors, motorized dampers, and programmable thermostats.
This measure adds a VFD to the existing fan for efficiency and CO/NO2 sensors for emergency control of the parking garage exhaust ventilation system.
Install higher performing direct drive electrically controlled motors to 17 exhaust fans not connected to the ERV.
Install a cold-temperature VRF system for Equipment/Mechanical Room (EMR).
Optimize the existing steam heating system for peak heating demand periods.
Recover wasted heat from boiler flue gas to pre-heat DHW.
Install Energy Recovery Ventilators to building ventilation systems by ducting multiple exhaust risers towards the fresh air rooftop unit.
Install air source VRF heat pumps to replace packaged AHUs and amenity AC units.
Achieve 80% of DHW load electrification by implementing air source heat pumps with water storage.
Install low flow fixtures to reduce hot water consumption.
Replace existing PTACs with steam coils with cold climate Packaged Terminal Heat Pumps (PTHPs) with programmable thermostats.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

$9.8M

Capital costs of decarbonization through 2034.

Avoided Risks

Business-as-Usual Costs

$4.1M + $106k / YR

Energy cost savings: 103k / YR by 2036.

Repairs & maintenance savings: 3k / YR.

BAU cost of system replacement/upgrades: 4.1M avoided 2035-2049.

Avoided Risks

Business-as-Usual Risks

$1M

Avoided LL97 fines through 2034.

Added Value

Decarbonization Value

$3.4M

Incentives.

Net Present Value

$2.8M

Net difference between the present value of cash inflows and outflows over a period of time.

Four ECM packages were compiled as an outcome of this high-level study to allow the building an opportunity to optimize NPV and CO2 reductions. The Victory recommended package meets the ESRT 80% CO2 reduction with the CLCPA grid. It also meets the LL97 2040 targets based on the project grid. This package results in a 58.9% energy reduction from the benchmark year. Energy cost savings begin to accumulate toward the end of the study period. Utility costs increase is mitigated by energy cost savings associated with implementing the recommended package. 

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Strategic decarbonization roadmap for The Victory.

Installation of recommended ECMs goes into 2034. The recommended 2024 measures are focused on improvement of ventilation efficiencies in general areas and electrification of apartment heating and appliance upgrades, along with base building efficiencies with an estimated 2.3-year payback.

More Like This

Case Study
Case Study

The Heritage

Fully occupied mixed-income property pursues facade retrofit
The Heritage Case Study
Case Study
Case Study

The Towers

Oldest US multifamily co-op transforms wastewater into clean energy
The Towers Case Study
Case Study
Case Study

Whitney Young Manor

Recapitalization to achieve carbon neutral affordable housing
Whitney Young Manor Case Study

Case Study

Energy & Carbon Modeling Guide

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Insights from the Empire Building Challenge

A calibrated energy model should play a central role in building out a decarbonization plan because it provides insights on:

  • Current building energy and carbon profiles, and costs.
  • Potential energy, carbon, and cost savings of energy conservation measures (ECMs.
  • The impact of groups of ECMs, and the order of implementation and timeline.

The steps to follow include:

  • An initial energy model is developed using commonly available building information such as architectural floorplans, MEP schedule sheets, and BMS sequences of operation. 
  • The initial model is then refined and “calibrated” to the building’s real utility data for each utility consumed, creating a baseline condition that ECM’s will be compared against. 
  • The baseline energy model is used as a test bed for individual ECMs to understand potential energy, carbon, and cost impacts. 
  • Evaluate the financial performance of each ECM. These results will be used to identify strategies that are economically viable and should be considered further.  
  • Those ECMs that are economically viable on their own may be grouped together with other ECMs to help build a holistic business case for system optimization and maximum carbon reduction. 
  • During the evaluation process, the project team should take the evolving emission factors associated with utilities such as electricity and steam, as well as the impact of rising average and design day temperatures/humidity, into account.

Key outputs from the energy modeling workflow should include data driven charts showing energy end use breakdown and costs, carbon footprint of each utility, building carbon emissions vs. LL97 targets and fines, and who “owns” the carbon footprint (i.e. tenants, building operations). It is important to note that not all energy models are created equally. For a deep energy retrofit project, the accuracy of the energy model should align with ANSI/ASHRAE/IES Standard 90.1. Code or LEED energy models that were developed for the building in the past are not appropriate for this effort.  

Learn more about building energy modeling. 

Below is a selection of the energy modeling software packages used to support the case study findings presented in this Playbook, and throughout the industry.

1. Build and Calibrate the Initial Energy Model

An energy model is developed in multiple phases. In the first phase, the energy modeler must build an initial model that captures the geometry, material attributes, occupancy types, MEP systems and basic information about the building’s operations. The energy modeler should also include surrounding buildings that may impact sun exposure on the different facades of the building under study. This initial model will produce a rough estimate of how the building performs every hour during the year. Then in the next phase, the energy modeler must hone the model’s accuracy by “calibrating” the initial model to utility data and detailed building operations information. Code or LEED energy models that may have been created for the building during its initial design and construction should not be used in deep energy retrofit study efforts because they do not reflect the actual performance of the building under study.

Lessons Learned and Key Considerations

  • Determine energy model accuracy expectations early: Energy model accuracy can vary widely. For a deep energy retrofit study, the energy model should be highly accurate and align with ANSI/ASHRAE/IES Standard 90.1. Building management teams should set model accuracy expectations with the energy modeler at the onset of the project. This will help inform how assumptions are made and where the modeler should or should not simplify certain aspects of the model. 
  • Energy model calibration takes time but is worth the investment: Calibrating the initial energy model is a continuous and iterative process that can span multiple days or weeks depending on the complexity of the building. This time investment is well worth it because the quality of the energy modeling results is directly dependent on the quality of the calibration effort.  
  • Sync energy modeling assumptions with site observations: Even well-maintained buildings with stringent base-building and tenant standards have operational nuances and anomalies. Equipment may be shut off or sequences may be manually overwritten because the system wasn’t commissioned, wasn’t correctly integrated with the BMS, or was causing a localized issue that required a quick fix. This is especially true for older existing buildings that have had operations team turnover resulting in a loss of institutional knowledge over the years. For the energy model to accurately capture savings for ECMs, the calibrated model must reflect real-life operation. The project’s energy modeler should capture these nuances in the calibrated model whenever possible. 
  • Perfection is the enemy of “good enough”: The energy model will never perfectly simulate the performance of the building. There will also be a margin of error that comes from very specific nuances in building construction or operation that can’t be captured by simulation-based software. The project team should set reasonable expectations for the level of modeling and calibration effort that aligns with AANSI/ASHRAE/IES Standard 90.1 but also conforms to the project schedule and status. 
  • Share model visualization with the project team: Energy modeling can be a complex topic that may seem inaccessible to non-technical audiences. To maintain good project team engagement during the energy modeling phase, the energy modeler should prepare and share data visualizations that can help tell the story of how the building uses energy. Graphs, rendering, and infographics are great examples of visual assets that can demystify the energy modeling process.  

2. Create the Baseline Energy Model

The baseline model represents the current systems and operations of the building, adjusted for “typical” weather conditions and other criteria. Energy savings for all proposed ECMs will be calculated relative to the baseline model performance.

Inputs

  • The calibrated energy model 
  • TMY weather data 
  • List of planned upgrades, tenant lease turnover schedules

Activities

Make Necessary Adjustments to the Baseline Model: To create a baseline energy model, the calibrated energy model consumption should be adjusted to account for the following: 

  • Weather: Typical weather data for the site can be modeled using TMY3 data files, which capture and compare typical performance and eliminate any extreme weather event effects that may have occurred in the baseline year. TMY3 files are produced by the National Renewable Energy Laboratory and can be freely accessed and downloaded from the EnergyPlus website. 
  • Occupancy (Lease Turnover or COVID): The baseline energy model should be adjusted to account for any fluctuations in building occupancy that are expected to occur over the study period. For example, tenant lease turnover schedules should be collected during the Discovery Phase and accounted for in the baseline model. Similarly, any disruptions to building occupancy, such as those experienced during the COVID 19 global pandemic, should be captured in the baseline model. To understand the full magnitude of ECM impacts, it is important to separate energy reductions resulting from ECMs versus those resulting from lower occupancy levels. 
  • Planned Upgrades: The baseline model should be adjusted to account for any planned projects that will impact the building’s energy consumption. By capturing these savings in the baseline model, the project team will avoid projecting ECM savings that are no longer available because they have already been captured by planned projects.  

The baseline model represents “business as usual” building energy consumption and associated energy cost. It is the reference point used to determine the energy savings of potential ECMs and track progress towards reaching project objectives. 

Generate Detailed End-Use Breakdowns: Once the baseline energy model is complete, the project team can begin to gain additional insight into how the building uses energy. A particularly useful output of the model is a detailed end-use breakdown like the one shown below:

The energy modeler will be able to analyze this end use breakdown and identify systems that appear to be high energy consumers. Hypotheses should be vetted by the engineer and facilities team based on their understanding of the building.

Document Assumptions and Review Initial Results with the Team: After the initial baseline model has been built, the energy modeler should review his/her/their assumptions and the resulting load breakdowns with the project team. The modeler should then solicit feedback from the engineers and building operators who have greater insight into the current building operation and systems design. Feedback should be incorporated into the next iteration of the baseline model. The feedback loop between the energy modeler and the building team will be an iterative process that will continue throughout the duration of the project as more information is collected from the building. 

Overlay Carbon Emissions: Once the baseline energy consumption results are refined, the associated operational carbon emissions can be calculated by multiplying the annual energy consumption by a fuel-specific carbon coefficient. Carbon coefficients represent the greenhouse gas emissions intensity of different energy sources and are used to determine a building’s total greenhouse gas emissions in tons of CO2 equivalent. This analysis will identify the primary contributors to greenhouse gas emissions in terms of fuel type, system, and ownership (end-user that is driving the demand). 

Refine the Preliminary List of ECMs: At this point, the energy modeler and engineer should work together to refine the preliminary list ECMs that was developed in the “Build the BAU Base Case” task. The additional information gleaned from the detailed end use breakdown should be used to validate the initial list of measures and to identify new areas of focus that were not identified in early phases of the project.

Outputs

Deliverables from the baseline energy model work include the following: 

  • Baseline energy model is a reference for potential energy, carbon and cost savings   
  • Building energy consumption and detailed end use breakdowns 
  • Documented baseline system assumptions  
  • Finalized List of ECMs for study in the energy model

Lessons Learned And Key Considerations

  • Document and review input assumptions: A robust energy model can be a reusable tool that can serve the building team for many years after the initial deep energy retrofit study. To ensure the information within the model is accurate and up to date, any inputs and assumptions should be documented and shared with the building management team. This will give the team the opportunity to correct any assumptions that do not align with the actual operation of the building and will create a log where inputs can be revised and updated as the building evolves.

3. Analyze Individual ECMs

In this task, the energy modeler will run all ECMs in the energy model and extract associated energy, carbon, and cost savings for each. For this task, the energy modeler will need the baseline energy model and the finalized list of ECMs that will be evaluated.

Inputs

For this task, the energy modeler will need the baseline energy model and the finalized list of ECMs that will be evaluated.  

Activities  

Develop a Modeling Strategy for Each Energy Conservation Measure (ECM): Before the modeler begins modeling each ECM, he/she/they should develop a modeling strategy for each measure including performance characteristics and any important assumptions. Documenting model inputs and modeling strategy for each ECM will make it easier to troubleshoot if there are any surprising results. 

Run ECMs in the Model and Analyze Results: Once all ECMs are explicitly defined and the modeling strategy has been finalized, the modeler will run each ECM to create a proposed energy model. The proposed energy model is compared to the baseline energy model to estimate energy, carbon and cost savings. The energy modeler will extract savings for each ECM from the proposed model, which will enable the team to study the individual impact of each ECM and vet the results. Energy savings for individual ECMs should be compared to industry experience to gauge their validity. When surprising results arise, the team must explore why and either justify the inputs or modify them according to additional information. 

Refine and Troubleshoot as Needed: Assumptions may need to be revised after this initial review of the results, especially if there are unexpected results.  

Compare Mutually Exclusive ECMs: In some cases, the team may develop mutually exclusive ECMs. These competing ECMS must be compared to determine which is the most energy efficient and by what margin. The energy model can be used to run multiple ECM options and compare estimated energy savings between them. The project team should decide which mutually exclusive ECMs should be advanced into the future rounds of analysis before packaging ECM in the next phase of modeling. 

Assess Maximum Theoretical Potential for Energy Savings: The final energy consumption of the proposed model will factor in all the energy savings associated with the ECMs. This resulting value is the theoretical minimum energy consumption for the building, assuming all technically viable ECMs are implemented. At this point it is helpful to determine the percent reduction from the baseline and evaluate how this theoretical minimum stacks up to the project objectives. Important questions to answer include:   

  • Does the theoretical minimum energy consumption meet or exceed the project’s energy and carbon goals, and if so by how much?    
  • Which ECMs contribute most significantly to energy and carbon reductions and are they likely to be financially feasible?   
  • Are most of the energy savings attributable to a few select ECMs or are energy savings spread evenly amongst many small measures?   

The analysis of the energy modeling results can be facilitated by the creation of ECM waterfall charts which show the baseline energy consumption / carbon emissions and the progressive impact of each ECM on these values. The final energy consumption and carbon emission of the proposed model will establish the theoretical minimum.   

Outputs

Outputs and deliverables of this work include: 

  • Initial energy, carbon, and cost savings for individual ECMs. Based on this initial review and analysis, the team will identify further data collection required to refine the modeling assumptions and improve the accuracy of the outputs.  
  • Actionable information regarding which mutually exclusive ECMs are most impactful and should be advanced to the next phase of modeling. 
  • The maximum theoretical energy savings and carbon reduction for the building. This will give the project team an indication of how many ECMs may need to be implemented to meet the project objectives.  
  • Initial energy cost savings for each measure, which can be used to inform preliminary financial analyses.

Lessons Learned & Key Considerations 

Review and question surprising results: When reviewing preliminary energy savings, it is important to make sure that the results make sense and question any surprising results. The energy modeling results are only as accurate as the modeling inputs. These assumptions must be vetted to ensure accurate savings. Data collection during this time will be useful to determine modeling assumptions. Assumptions can also be informed by the insights and advice from industry experts. Energy modeling is an iterative process, and the model will continue to be refined as more information is collected.  

Identify high priority ECMs: Preliminary results may indicate that most of the energy savings available are attributable to a select number of ECMs. Implementing these select few ECMs may be all that is required to meet the project’s short-term objectives. The project team should focus on refining the inputs for these high impact ECMs to ensure accurate savings.  

Remember many small measures have a cumulative impact: To maximize savings and meet long-term project objectives like 80×50 it is likely that a wider array of ECMs will need to be considered for implementation. This holds true especially for buildings that have undergone recent renovations where the most impactful ECMs have already been executed. In this case it may be necessary to evaluate the cumulative impact of many small measures. Therefore, individual measures with minor carbon reduction impacts should not be dismissed too quickly.

4. Group, Sequence, and Package ECMs

As the Energy and Carbon Modeling phase is progressing, a preliminary financial analysis of individual ECMs will also take place in parallel. Preliminary results from the financial analysis will help inform this phase of modeling. Individual ECMs should not necessarily be discarded based solely on their associated capital cost; expensive ECMs can be grouped together with related financially viable measures to optimize savings and make a more comprehensive business case that maximizes CO2 reduction while still addressing investment return hurdles.   

Once ECMs have been grouped, an implementation duration and timeline should be established for each. This will depend on factors like short term project budgets, tenant lease turnover, operational budgets, and maintenance schedules. The ECMs should then be sequenced according to their implementation timeline so that energy savings for each ECM can be captured accordingly.  

Finally, several ECM packages should be assembled for owner evaluation. Each package will include a different combination of ECMs to be implemented with varying degrees of cost and carbon impact. This variety will provide the owner with options to choose from when striving to balance the project objectives and constraints.

Inputs

For this task the project team will need the following inputs: 

  • Energy, carbon & cost savings from the proposed energy model 
  • Preliminary ECM capital costs estimates: Preliminary results from the financial analysis will provide approximate NPV values for each ECM based on the projected energy cost savings and capital costs. These results will be used to identify those ECMs that are economically viable on their own, those that are worth pursuing due to large carbon impact, and those that should be discarded at this point due to technical infeasibility, cost, or low carbon impact. Those ECMs that are economically viable on their own may be grouped together with related, and costly, but effective, ECMs to help build a stronger business case.

Outputs  

Outputs and deliverables of this task include the following: 

  • Finalized grouped and sequenced ECM list.  
  • Results from Packaged ECMS for Owner consideration.

Activities 

Establish the Final List of ECMs: Once a preliminary financial analysis has been conducted and approximate NPV values and energy and reductions are calculated for each ECM, the list of measures should be reviewed and finalized. Typically, ECMs will fall into the 5 categories described below, with associated outcomes:  

  1. ECM has a positive NPV and has a large carbon impact. ECM should be considered seriously for implementation. Additional QA/QC should be completed to ensure savings are accurate. 
  2. ECMs that has a positive NPV but has a minor carbon impact. ECM should be evaluated collectively with other measures, as the impact of many small measures can compound. 
  3. ECM has a positive NPV and has a large carbon impact but is technically challenging or infeasible. ECM should likely be eliminated because it will not seriously be considered for implementation by the Owner or building operations team
  4. ECM has a negative NPV (simple payback may still be within the useful life of the ECM) but has a large carbon impact. Financial case for the ECM should be investigated further – the incorporation of maintenance costs, baseline requirements or planned capex unrelated to emissions reductions, and potential incentives in the financial model may improve the financial performance. 
  5. ECM has a negative NPV and a small carbon impact. ECM should be eliminated.

Group and Sequence the ECMs: Once the list of ECMs has been finalized, the project team should determine the anticipated duration of time required for completion and the implementation sequence. There are various considerations that should be understood during this part of the modeling process: 

  • The timing of implementation will be unique to each building and vary depending on the types of existing systems and their age and performance. Well maintained systems may be able to be updated and optimized in the short term and replaced in the long run depending on the project objectives.   
  • The sequence of ECMs will depend on various factors including tenant lease turnover schedules, maintenance schedules, and investment cycles. 
  • Interrelated and codependent ECMs should have the same timeline and/or be sequenced appropriately. Some ECMs should be considered as a group to help make a financial case for optimized carbon reductions. 
  • The impact of the ECMs will decrease as the sequence progresses, and savings will be less than if they were directly compared to the initial baseline. This is because as each new ECM is executed and absorbed into the baseline model, this “new” baseline model against which new ECMs are compared performs more efficiently, thereby decreasing the potential for savings. 

Create ECM Packages: Once the ECMs have been sequenced, various implementation packages should be compiled for final evaluation. Given that implementing all ECMs will likely be cost prohibitive, the project team should provide the owner with different options along the spectrum of project cost and carbon reduction.    

To book end the problem, it is recommended that two of the proposed packages be a “CO2 Maximum Reduction” package and an “NPV Maximum” package. These packages are described below:

  • CO2 Maximum Reduction: Package includes all technically viable measures, even if they are not economically viable at the time of the analysis. The purpose of this package is to find the technical maximum CO2 reductions achievable.
  • NPV Maximum: Package includes only those measures that payback within the study period and have positive NPVs. These are the minimum CO2 reductions that can be expected with a financially viable package.

Additional packages should be created and evaluated based on feedback from the project team. These hybrid packages will allow the owner to choose from a wide range of options with different value propositions.

Lessons Learned & Key Considerations

Visualize the results: A helpful tool for analyzing ECMs results is a 2 x 2 matrix that shows the NPV vs. the CO2 reductions for each ECM. 

Consider non-energy benefits: Before eliminating measures because they have small carbon impacts, the project team should evaluate the non-energy benefits of the measure. If the non-energy benefits align with the owner’s overall sustainability strategy or make the building a more valuable asset, the building team may still wish to pursue the item. For example, a façade upgrade or replacement may not have a positive NVP but will make the building more competitive with newer buildings.  

5. Generate a Decarbonization Roadmap

Once the finalized ECMs have been grouped, sequenced, and packaged, the energy model can be run to obtain final results. These results will be used in the detailed financial analysis and will represent a time-dependent decarbonization roadmap for the building. The final results will include energy savings, energy cost, and CO2 reduction for each package under study, and should phased according to the anticipated implementation timeline to reflect the gradual and overlapping impacts of each measure over a 20- or 30-year time horizon.  CO2 reduction over a longer time horizon should include a changing electric grid carbon coefficient to account for grid decarbonization.

Inputs

The inputs for this task include: 

  • The finalized ECM Packages 
  • Carbon coefficients for the Future Grid 

Activities

Run Final ECM Packages in the Model and Analyze Results: The modeler should update the proposed model based on the final list of ECM packages and intended implementation sequence. Energy results should be provided for each ECM, even if there are several ECMs that are intended to be grouped together, as this provides granular data for the financial analysis to be conducted down the line. This is important because each ECM may have distinct capital costs, maintenance costs, and incentive implications which may impact the financial viability of the measure.     

To reduce the modeling time, it may be assumed that a given ECM’s savings are recognized at once, even if it is anticipated that the ECM and associated savings will be realized over a period of several years. These savings can be split proportionally according to the intended timeline in a post-processing exercise without a major impact on the results, so long as the sequence of the ECMs is correct.    

Calculate Savings from the Baseline: The final run of the proposed energy model will produce energy, carbon and cost information that should be compared to the baseline energy model to determine anticipated savings. During this exercise, project teams should consider the following:  

  • The energy model provides energy costs for each run, but it may be beneficial to conduct advanced tariff analysis that evaluates the anticipated annual hourly energy consumption for each package. Given the energy consumption results from the model, and the implementation timeline, a composite file of hourly data can be created to accurately reflect the percentage of each ECM that has been implemented each year. This will result in an energy consumption profile that reflects the expected annual peak and associated demand charges. More accurate utility costs can be calculated using this information. At a minimum, a utility cost escalator should be applied to the initial calculated energy cost savings to capture the impact of changing rates over time.  
  • The anticipated CO2 emissions reductions associated with each ECM can be calculated by overlaying today’s carbon coefficients onto the energy savings results. For a greater level of accuracy, the carbon coefficients from LL97 can be overlaid on the annual energy consumption for the years where this data is available (2024-2029). Beyond 2029, project teams should consider different electrical grid decarbonization projections and overlay evolving carbon coefficients on the yearly energy consumption. For example, New York’s Climate Leadership and Community Protection Act (CLCPA) targets 70% renewable energy by 2030. Assuming the grid meets the goals and schedule of the CLPCA, the carbon coefficient for electricity for the year 2030 will be much lower than it is today.  

Outputs

The final energy modeling results should include energy savings, energy cost savings, and CO2 reduction for each ECM package studied.

Lessons Learned & Key Considerations  

Total carbon emissions depend on the building and the grid: While building owners have control over how efficient their building is, they cannot control the long-term decarbonization of the electrical grid. Building owners can and should evaluate how they can optimize the energy performance of their building through the implementation of ECMs, but the total associated carbon emissions produced by the building will depend on both the magnitude of the energy consumed and how carbon-intensive the source of energy is. For this reason, it is beneficial to understand how different grid scenarios and emissions factors impact the ECM results. A cleaner grid in 2030 may be the difference between meeting or exceeding the LL97 emissions limit for that year.

More Like This

Sorry, no content found.

Case Study

Resource Efficient Decarbonization Guide

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

This guide presents a three-step process for real estate owners, in coordination with engineers and designers, to develop a technically and economically feasible decarbonization plan for their building.  This holistic approach is informed by lessons learned from low-carbon demonstration projects funded through the Empire Building Challenge to help building owners develop and adopt successful plans for retrofitting their building. 

More Like This

Sorry, no content found.

Case Study

PENN 1

Innovative heat recovery project for carbon emissions reduction

Vornado Realty Trust is spearheading a groundbreaking retrofit at 1 Pennsylvania Plaza (PENN 1) in New York City, aiming to reach 100% carbon neutrality by 2040. This ambitious project is part of the company’s broader commitment to environmental sustainability, as outlined in their Vision 2030. PENN 1, a towering landmark in midtown Manhattan, stands at 57 stories and spans approximately 2.5 million square feet of office and retail space. Constructed in 1972, the building is a key component of THE PENN DISTRICT, Vornado’s flagship property cluster.

The roadmap to carbon neutrality at PENN 1 includes advanced waterside heat recovery measures. This strategy focuses on capturing and reusing heat from the building’s condenser water loop, a method that not only reduces heating loads but also facilitates a subsequent transition to electrification through air-source heat pumps and thermal storage. The PENN 1 project demonstrates a ‘thermal dispatch model,’ in which carbon-free energy sources are gradually deployed to fulfill the heating and cooling demands of a large commercial building.

By adopting this innovative approach, Vornado aims to significantly reduce the carbon footprint of PENN 1 while also setting a replicable model for building decarbonization in New York City. This initiative underscores Vornado’s role as a leader in sustainable real estate development, with a portfolio that includes over 34 million square feet of premier assets across New York City, Chicago, and San Francisco. Through Vision 2030, Vornado’s commitment to achieving carbon neutrality and a 50% site energy reduction reflects their dedication to pioneering sustainable solutions in the urban landscape.

PENN 1+2 Hero building
Emissions Reduction

100%

PENN 1 aims to achieve 100% carbon neutrality by 2030.

Lessons Learned

Accurate, calibrated energy models are essential for realistic projections of energy and carbon reductions, guiding the selection of feasible decarbonization measures for complex buildings.

Lessons Learned

Leveraging existing technologies in innovative ways, such as the purposeful dispatch of thermal energy and optimizing for scalability and affordability, can be as impactful as waiting for new technological breakthroughs.

Lessons Learned

Training and involving operations teams in the design and implementation phases are crucial for ensuring systems function as intended.

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
  • Equipment nearing end-of-life
  • New heat source potential
  • Tenant load change
  • Resilience upgrades
  • Efficiency improvements
Asset Conditions
  • Repositioning
  • Capital event cycles
  • Carbon emissions limits
  • Tenant sustainability demands
  • Investor sustainability demands
Market Conditions
  • Technology improves
  • Policy changes
  • Utility prices change
  • Fuels phase out

The project team initially explored two packages of combined reduction measures to assess the impact of eliminating fossil fuels and electrifying the building’s heating end uses. Individual measures studied earlier in the project were selected and combined with additional infrastructure enhancements to develop two electrification packages summarized as follows: 

  • Beneficial Electrification: Incorporates a suite of tenant, airside, and envelope upgrades along with the installation of air source heat pumps working in conjunction with the cogeneration plant to keep the building heated; eliminates all district steam resources. 
  • Full Electrification: Incorporates the same set of upgrades but utilizes more air source heat pumps in place of the cogeneration plant. 

The thermal dispatch approach utilized at PENN 1 allows the building to intelligently prioritize low-carbon thermal resources for operational building needs ahead of those that are more carbon intensive. This strategy, enabled by electrification of heating loads and heat recovery measures, will reduce energy use by 22% and carbon emissions by 38% by 2030.

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Existing Conditions

This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.

Click through the measures under “Building After” to understand the components of the building’s energy transition.

Sequence of Measures

2022

2023

2024

2025

2030

Building System Affected

  • heating
  • cooling
  • ventilation
Penn One Building Before
Penn One Building After
Replace existing curtain wall glazing with triple pane insulated glazing unit (IGU)
Replace steam turbine chillers with high efficiency electric chillers
Replace constant volume induction units with Variable Air Volume (VAV) units as tenant spaces roll
Install WSHPs to reclaim rejected heat and offset building heating
Install ASHPs to partially electrify heating and inject heat to the secondary hot water system
Convert existing condenser water-cooled DX units to chilled water-cooled unites. Maximize heat recovery
Engage tenants during turnover to ensure best-in-class fit-out
Disable 24//7 cogeneration plant operation to eliminate most on-siite fossil-fuel usage and keep district steam as back-up; Maintain the Cogen plant as a resiliency and demand response asset
Install ASHPs to electrify the remaining heating load
Install thermal storage to offset peak demand and shift heating and cooling loads

Reduce Energy Load 

  • Envelope Improvement: install new triple pane glazing 
  • Induction Units Replacement: replace constant volume perimeter induction units with VAV units 
  • Enhance Tenant Fit-out: Install high-efficiency equipment and engage with tenants to ensure best-in-class fit-out during turnover
  • Thermal Layering: Heating loads are sequenced and prioritized to first engage low-carbon resources to meet the building’s heating demand, and then use next-available or higher carbon-intense thermal resources to come online. For example, first use low carbon electric thermal resources from water-source heat pumps, and then utility steam to meet remaining demand. When the ASHPs are installed, they will be dispatched second, as another low carbon alternative. This approach makes it possible to meet peak heating loads during extreme cold events with relative ease and low carbon emissions.

Recover Wasted Heat 

  • Condenser Water Heat Recovery: This tactic will use water-source heat pumps (WSHP) to utilize heat from the condenser water system to supplement heating hot water for the building’s hydronic system. 
    • The WSHP method creates a “heat-lifting” machine that will raise the temperature of hot water to match the building’s existing supply – usefully extracting heat that would otherwise be wasted and reducing steam heat emissions. 
  • Computer Room Air Conditioning (CRAC) Conversion: Convert existing condenser water cooled DX units to chilled water-cooled units to maximize heat recovery and improve cooling efficiency

Partial Electrification: 

  • Electric Chillers: Replace steam turbine chillers to electric chillers 
  • Partial Air Source Heat Pumps: Install ASHPs to partially cover heating load served by the secondary hot water loop

Full Electrification: 

  • Cogen Decommissioning: Retire cogeneration plant and eliminate on-site fossil fuel usage; keep district steam as back-up
  • Thermal Storage: Install thermal storage systems to enable full-building electrification by shifting and support heating and cooling peaks and empower grid flexibility 
  • More ASHPs: Install ASHPs to cover remaining heating load

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

$4.15M

Capital costs of decarbonization (est. in 2025 $).

Avoided Risks

Business-as-Usual Costs

$8.01M

Energy cost savings (2026–2050 [25 yrs]): 3.56M.

Repairs and maintenance savings: 99k.

BAU cost of system replacement/upgrades: 2.7M.

Residual cost (remaining equipment value): 764k.

Avoided Risks

Business-as-Usual Risks

$724k

LL97 fines avoided starting in 2030.

Added Value

Decarbonization Value

$1M

Incentives.

Net Present Value

$1.015M

Net difference between the present value of cash inflows and outflows over a period of time.

Heat recovery remains a very costly endeavor. Even with the Empire Challenge award of $1 million, the energy savings alone yields a payback in excess of 7 years. Compared to other energy conservation measures with rapid ROIs, this is not in the realm of being a “no-brainer.” However, unlike other retrofits or upgrades that target electricity savings, this project reduces our future reliance on district steam, a utility that is expected to undergo very high cost escalations as they incorporate renewables into their production.

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Strategic decarbonization roadmap for PENN 1.

The Vornado team has gained countless lessons-learned on their decarbonization planning journey. The following are essential insights from the project team:

Insights from the energy model

The predictive energy model revealed that while the renovations to the building will yield significant energy and carbon reductions, the energy consumption from tenant spaces, such as computer and plug loads, must also be significantly reduced and intelligently managed to drive down the carbon intensity of the building (and reduce/eliminate exposure to LL97 through the 2030 compliance period).

While every effort was made to ensure that the model reflects the design team’s best understanding of the building’s existing conditions and future usage, the modeled energy consumption, energy cost, and carbon emission estimates will likely vary from the actual energy, cost, and carbon of the building after construction. This is due to variables such as weather, occupancy, building operation and maintenance, changes in energy rates, changes in carbon emission coefficients, and energy uses not covered by the modeling scope.

Underscoring the importance of an iterative design process

In the first iteration of the decarbonization strategy, the Vornado team approached the project with an all-or-nothing electrification mindset. They found that the strategies that achieve the deepest levels of decarbonization through fully eliminating district steam and co-generation waste heat as heating sources may not be practical nor cost efficient to implement in such a complex existing building. So, they went back to the drawing board.

In the second iteration of the project, a more holistic strategy emphasizing the following core principles was developed:

  • Re-use existing infrastructure (i.e., piping and ductwork) where possible
  • Recovery wasted heat from internal loads
  • Electrify heating loads affordably with heat pumps
  • Compress space requirements for electrification equipment/systems
  • Dispatch thermally stored energy to shift and smooth loads to promote grid flexibility

Resource Efficient Electrification framework: With these guiding principles, the Vornado team developed a new strategy that follows the  Resource Efficient Decarbonization Framework, which JB&B refers to as “Reduce, Recycle, Electrify”. Phasing, cost compression, and space compression were prioritized so that measures are more likely to be installed and scaled to other Vornado properties.

Key takeaways on the broader decarbonization decision-making process

  • Invest in a Calibrated Energy Model – In large and complex buildings, building owners should commission a decarbonization study with an investment-grade calibrated energy model. Energy models should be custom built to the building’s unique characteristics, ensuring the analysis of retrofits are accurate and adds confidence to decision making. An energy model is a flexible tool that captures interactivity of all systems and ensures the strategies and measures studied have realistic energy and carbon reduction projections.
  • Just Because It’s Feasible Doesn’t Mean It’s Practical – Anything is possible in an energy model. Technical teams must be aware that building ownership teams care about more than just the energy and carbon results from the model. Strategies must be practical in real-world scenarios and should aim to re-use existing infrastructure where possible, minimize disruption, use space efficiently, and compress costs as much as possible. Technical teams must be prepared to show building owners how a particular measure will be installed practically.
  • Don’t Expect 5–7 Year Paybacks on Decarbonization Measures – Deep decarbonization measures will likely have long paybacks. This is due to high upfront costs of electrification technology, supporting infrastructure, and invasive retrofitting. Working against these high-efficient electric systems is the price of electricity, which is 5 to 6 times more expensive per unit of energy than natural gas. Simple payback analyses are unable to capture the true value of decarbonization investments, including non-energy benefits. Ownership teams have to adjust their payback expectations when considering deep decarbonization measures. 
  • Technological Innovation Isn’t the Only Innovation – There is new and exciting technology out there that has the potential to revolutionize the way we electrify buildings, but in the meantime, there are innovative approaches to electrifying buildings today with currently available technology. Purposeful dispatch of thermal energy sources and optimization for scalability, practicality, and affordability are innovative strategies. 
  • Conditioning Exhaust Air – Recycling waste heat from exhaust air streams isn’t a new idea, but using the refrigeration cycle to extract and lift heat from exhaust air streams to serve heating loads is a new and innovative concept. Essentially, by air conditioning the exhaust air, like traditionally avoided toilet exhaust, heat can be recovered and lifted to higher temperatures by a heat pump to offset heating loads. The reverse is also true in the summertime, where exhaust air can serve as a heat rejection medium for the chilled water production of chiller plants. 
  • Potential of Low Temperature Hot Water in Existing Chilled Water Coils Low temperature hot water enables heat recovery and air source heat pumps to have a big impact, but reconfiguring all comfort heating systems in existing buildings to be low temperature is difficult and costly. The following approach offers a more practical alternative:
  • Partially electrify high temperature hot water systems (i.e., perimeter systems) with water-source heat pumps and condenser heat recovery. This allows existing distribution infrastructure to stay in place – critical to wider spread of heat pump adoption. 
  • Transition air handling unit steam or hot water coils to low temperature, which can be served by air source heat pumps. The cost and scope of coil replacements is much more manageable than replacing all heating systems with low temperature hot water infrastructure. In some cases, existing chilled water coils can be used with low temperature hot water and become a modified change-over coil, negating the cost of replacement. 
  • Operations Team Integration: These decarbonization strategies are new and complex. Existing operations teams must be part of the design and implementation of these systems and training is of critical importance. A system that is designed to be low-carbon will not be successful if it is not operated per the design intent and understood thoroughly by those operating them. 
  • Disruption and Phasing: Some of the best decarbonization strategies are also some of the most disruptive. Phasing must be based upon several factors including the rate of grid decarbonization, leasing turnover cycles, capital planning cycles, and equipment nearing its end of useful life. 

More Like This

Case Study
Case Study

Empire State Building

New York City icon reaches for carbon neutrality
Empire State Building Case Study
Case Study
Case Study

660 Fifth Avenue

High-rise implements heat pumps and outdoor air systems for decarbonization
660 Fifth Avenue Case Study

Case Study

Terminology & Definitions

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Insights from Empire Building Challenge 

The following are terms commonly used in the building decarbonization universe:

Carbon Neutral Buildings:

Buildings that produce no net greenhouse gas emissions directly or indirectly. Carbon neutrality spans multiple scopes of associated greenhouse gas emissions including:operations on-site and via emissions associated with third parties delivering energy or products to site and embodied carbon emissions from the full lifecycle and production of construction materials. Emissions are often referred to as scope 1, 2 and 3. Essentially, scope 1 and 2 are those emissions that are owned or controlled by a company. Meanwhile, scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or controlled by it.

Coefficient of Performance (COP):

The ratio of the amount of heat delivered from a heat pump over the amount of electrical input. For example, a heat pump has a COP of 5.0, if it can deliver 5 units of heat for one unit of electricity input. A COP of 1.0 is typical for resistance heat (e.g., toaster or hair dryer). 

Facade Overclad:

An additional weather barrier installed overtop an existing facade to increase building envelope energy performance, thermal comfort, and to reduce ongoing building maintenance. 

Heat Recovery/Recycling:

The capture and reuse of waste heat often incorporating thermal storage techniques, see Time Independent Energy Recovery (TIER).

Net Present Value (NPV):

An analysis of project cash flow over a set period which incorporates inflation and the time value of money; the “upfront” lifetime value of a project. A positive NPV yields a Return on Investment (ROI).

On-site Fossil Fuel:

Fossil fuel consumed typically via combustion within a building for the purpose of heating, cooling, domestic hot water production, or power generation.

Return on Investment (ROI):

The ratio between net income and savings from a project investment over a set period. ROI is typically presented as a percentage for the period of one year.

Simple Payback:

Economic benefits yielded from investment in a project. Simple payback is typically presented in the time (e.g. years) it takes to recover an investment, but does not consider variations in cash flow over time or the time value of money.

Strategic Decarbonization Assessment (SDA):

A mid- to long-term financial planning method for building owners to manage carbon emissions and energy use.

Thermal Distribution:

The means by which thermal energy is moved throughout a building. This includes moving heat through various heat transfer mediums including but not limited to water, steam, refrigerant gas, or ducted air.

Thermal Energy Network (TEN):

Infrastructure that enables heat sharing through a number of thermal transfer mediums and between heat customers and producers who extract heat from multiple sources using varied technologies.

Thermal Storage:

The storage of thermal energy for later use, utilizing various mediums and technologies.

Waste Heat:

Heat or cooling which is typically rejected to the air and not recovered. Waste heat sources include sanitary sewer heat, heat rejected from air source heat pumps, cooling tower heat, heat lost from ventilation exhaust, steam condensate return, and underground transportation, among others.

More Like This

Sorry, no content found.

Case Study

High Rise / Low Carbon Event Series: Keep the Outside Out

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Purpose by Design Architects
Sunamp
RMI
Dextall logo
Capital Logo
Winn Co
Gitel
SWBR
SoC Housing Logo
SHA Logo
Rise Boro Logo
PCA Logo
Mangrann Logo
LaBella Logo
KOW Logo
Kelvin Logo
Joe NYC logo
IAE logo
Hanac logo
First Service Residential Logo
Fairstead Logo
Ettinger Logo
Cycle Retrotech
Chartered Properties Logo
Ascendant Logo
Trinity Church Wall Street Logo
Hines Logo
Norges Bank Investment Management
Energy Machines logo
Consigli logo
URBS Logo
Inglese Architecture + Engineering Logo
Invesco logo
Sharc Energy logo
Loring Consulting Engineers logo
Curtis + Ginsberg Architects logo
Bright Power Logo
Paths LLC logo
EN-Power Logo
Egg Geo Logo
Blueprint Power logo
JB&B logo
Ryan Soames Engineering logo
Steven Winter Associates, Inc. logo
Corentini logo
Skanska logo
Reos Partners logo
Quest Energy Group logo
Luthin Associates logo
Johnson Controls logo
Buro Happold logo
Beam logo
Jonathan Rose Companies logo
Rudin logo
Silverstein Properties logo
Equity Residential logo
The Durst Organization logo
Vornado Realty Trust logo
Tishman Speyer logo
Omni New York LLC logo
LeFrak logo
LM Development Partners logo
Hudson Square Properties logo
Empire State Realty Trust logo
Brookfield Properties logo
Boston Properties logo
Amalgamated Housing Corporation logo

During this High Rise / Low Carbon series program developed to support the Empire Building Challenge and other NYSERDA programs, hear from experts focused on recent innovations in delivering high-performance, low carbon envelope retrofits, an essential keystone for maintaining high quality indoor environments while radically lowering heating and cooling demand to realize a low-carbon future. 

Featuring diverse examples, from the over-cladding of masonry buildings to the re-cladding of curtainwall buildings, this discussion will focus on the technical aspects of high performance envelopes like integrating MEP systems into cladding, but also the ownership structures and cost compression that can result from innovation in this critical space. 

Opening Remarks

James Geppner, Senior Project Manager, Retrofit NY, NYSERDA

Moderator

Todd Kimmel, Regional Specifications Manager, ROCKWOOL North America & Chairperson, Rainscreen Association in North America

Presenters

Abdulla Darrat, President, Renewal Construction Services LLC
Laura Humphrey, Director of Sustainability, L&M Development Partners

Panelists

Abdulla Darrat, President, Renewal Construction Services LLC
Aurimas Sabulis, CEO, Dextall
Erin Fisher, Director of Engineering Services, CANY
John Ivanoff, Associate Principal, Buro Happold

More Like This

Sorry, no content found.

Case Study

The Towers

Oldest US multifamily co-op transforms wastewater into clean energy

In Bronx, NY, the Amalgamated Housing Cooperative (AHC) embarked on a pioneering low carbon retrofit project at ‘The Towers,’ two 20-story buildings containing 316 affordable apartments across 425,000 square feet. Established in 1927, AHC is the oldest limited equity multifamily co-operative in the country. 

The retrofit focuses on upgrading the heating and cooling infrastructure to enable simultaneous operation, diverging from the existing seasonal limitation. By introducing cutting-edge solutions including wastewater heat recovery and geothermal systems, AHC aims to harness energy from domestic water sources, thereby phasing out its reliance on cooling towers and decreasing fossil fuel consumption. This initiative not only promises enhanced thermal comfort and sustained affordability for its residents but also sets a benchmark for energy efficiency and climate resilience. The project’s success could potentially revolutionize energy management across similar multifamily complexes in New York State, demonstrating a scalable model for other buildings with similar heating and cooling system configurations– a total market estimated at 200 million square feet. 

AHC’s commitment to its low-to-moderate income community underscores this ambitious venture, reinforcing its legacy and leadership in sustainable development.

The Towers buildings
Emissions Reductions

93%

carbon emissions reduction on an all-electric site by 2035.

Lessons Learned

This project will make clean energy from dirty water by recapturing heat from sinks, showers, and toilets.

Lessons Learned

The project’s complete building re-piping decrease the future loaded needed for the planned geothermal heat pump system improving performance and comfort.

Scale

200 million SF of multifamily building stock for potential replication across New York State. 

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
  • System Failure
  • Equipment nearing end-of-life
  • New heat source potential
  • Comfort improvements
  • Indoor air quality improvements
  • Facade maintenance
  • Resilience upgrades
  • Efficiency improvements
Asset Conditions
  • Recapitalization
  • Capital event cycles
  • Carbon emissions limits
  • Investor sustainability demands
  • Owner sustainability goals
Market Conditions
  • Technology improves
  • Policy changes
  • Infrastructure transitions
  • Fuels phase out

The Towers are two of 13 buildings that comprise AHC’s multifamily campus located in the Bronx. Many of the systems at the property, including the piping distribution system, are beyond their useful life and in poor condition, causing leaks and requiring continual repair and maintenance. The campus currently uses a central gas-powered boiler plant to produce steam for heating, cooling, and domestic hot water.

As part of its recapitalization cycle, the property is embarking on a decarbonization journey which will include a comprehensive retrofit of the heating, cooling, and domestic hot water systems, an envelope upgrade, and onsite renewable generation in the form of geothermal and solar PV. 

This project will increase thermal comfort and secure utility affordability for its low-and-moderate income residents, as well as enhance the energy efficiency and climate resilience of the property. 

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Existing Conditions

This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.

Click through the measures under “Building After” to understand the components of the building’s energy transition.

Sequence of Measures

2024

2026

2028

2030

Building System Affected

  • heating
  • cooling
  • ventilation
The Towers Before Illustration
The Towers After Illustration
The existing distribution system and terminal units are beyond their end of useful life (EUL). Install 2 new hydronic loops supplying both heating hot water and chilled water all year round to new fan coil units (FCUs) in apartments.
Install sewage tank and use Sharc Energy heat pumps to produce heating, cooling and domestic hot water (DHW)
Cleaning and balancing of existing ventilation system
Insulate roofs, replace windows and air seal walls.
Drill geothermal boreholes on property land and install ground source heat pumps to produce heating, cooling and DHW
The Towers After Illustration
Take advantage of rooftop space to install solar PV system for clean electricity generation
The Towers After Illustration

Reduce Energy Load 

  • New hydronic distribution: Replace the dual temperature hydronic system with new piping supplying both heating hot water and chilled water simultaneously to provide heating or cooling year-round improving tenant comfort. The measure includes new fan coil units with more efficient motors and designed for low temperature heating hot water to reduce the load on the buildings and facilitate heat pump technology integration.
  • Envelope Improvements: roof insulation, window replacement and air sealing walls 
  • Ventilation Maintenance: balancing and sealing of ventilation system to reduce exhaust air 
  • Controls Upgrades: Install modern control system to automate and optimize new heat pump systems

Recover Wasted Heat 

  • Wastewater Heat Recovery: Recapture heat from wastewater using WSHPs to produce heating, cooling, and domestic hot water (DHW). Use wastewater as heat sink in cooling mode to enable removal of old cooling towers.

Full Electrification 

  • Ground Source Heat Pumps: Drill boreholes on property land and install WSHPs to produce heating, cooling and DHW. Use boreholes as heat sink in cooling mode. 
  • Solar PV: Install solar PV system on rooftop 
  • Electrify Appliances: install electric dryers and cooking equipment

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

$33M

Capital costs of decarbonization.

Avoided Risks

Business-as-Usual Costs

$29.5M + $35k / YR

BAU cost of system replacement.

Repairs & maintenance.

Avoided Risks

Business-as-Usual Risks

N/A

LL97 fines do not apply at this property.

Added Value

Decarbonization Value

$6.7M

Incentives.

Net Present Value

$1.97M

Versus -$1.36M for BAU with difference of $3.33M. 

To confirm the viability of The Towers adopting energy efficiency measures, the project team constructed several discounted cash flow financial scenarios utilizing Net Present Value (NPV) or the total cash flow of the measures taken over a period of time by assuming a discount rate for the worth of money over a period. For comparison, they constructed a baseline for forecasted equipment replacement compared to the Roadmap measures. A comparison of investment costs are as follows: 

  • Baseline Costs: $29.5 million 
  • Measure Costs (Alternative 1): $33 million, $26.4 million (after rebates, tax benefits, etc.)

Using a 7% discount rate over 20 years, the discounted cash flows resulted in relative net present values (NPVs) of -$1.36 million for the Baseline and +$1.97 million for the planned ECMs, a difference of $3.33 million. Based on the analysis, the cost of planned ECMs is a more viable financial investment.

Notably, the costs of business-as-usual in these scenarios do not capture what New York State prescribes as the Social Cost of Carbon (SCC). The SCC is a metric used by countries, states, and other authorities having jurisdiction (AHJ) to place a cost on climate change impacts. New York State firmly defines the SCC as $125/ton of CO2 emitted. The alternative energy system for The Towers, though capital intensive, has clear economic benefits. This and many other climate change impacts such as point pollution, land degradation, human health, and others, are known as intangible decarbonization benefits.

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Strategic decarbonization roadmap for The Towers.

The measures used in our decarbonization strategy have been strategically planned based on priorities, as well as to optimize energy and carbon reduction. The approach is to reduce loads first to allow for reduced and properly sized new systems. This sequence enables implementation of the measures because it allows thermal loads to be reduced as soon as possible, before electrification of heating and cooling with the ground source heat pump (GSHP) system. Most critical to the success of the plan are the early implementation of the distribution system retrofit and installation of the wastewater energy transfer (WET) system for thermal energy recovery.

Due to the critical nature of the decarbonization work, AHC desires an aggressive implementation timeline for the measures. The work, specifically the piping and fan coil unit (FCU) replacement and WET system installation, is slated to occur 2024-2026. Then in 2026-2028 comes the critical steps of envelope improvements, submetering and control upgrades, and geothermal system installation. The geothermal measure will be a critical step for transitioning The Towers away from fossil fuels because the GSHP system will replace the steam supplied from the gas and oil fed central boiler plant for heating, cooling, and domestic hot water (DHW). This measure will allow the chiller, cooling tower, and steam piping to be fully decommissioned, thereby yielding additional operational and maintenance savings. In 2028-2030, installing the solar PV system will allow for further deep energy savings as it will enable The Towers to have a direct source of clean energy and rely less on the main electricity grid, which needs time to transition to clean energy. Lastly, in 2039-2034, electrifying the appliances will be the last component in completely transitioning The Towers away from on-site fossil fuels while also saving energy by installing high efficiency alternatives and providing health benefits to the residents by eliminating gas stoves.

More Like This

Case Study
Case Study

The Heritage

Fully occupied mixed-income property pursues facade retrofit
The Heritage Case Study
Case Study
Case Study

Whitney Young Manor

Recapitalization to achieve carbon neutral affordable housing
Whitney Young Manor Case Study

Case Study

A Rational Approach to Large Building Decarbonization

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Lessons from New York’s Empire Building Challenge

This article, published in NESEA’s BuildingEnergy magazine (Vol. 40 No. 1), addresses common “decarbonization blind spots” that impede progress and shares insights gained from the incremental methodology and integrated design process pioneered through NYSERDA’s Empire Building Challenge.

More Like This

Sorry, no content found.

Case Study

Technical Barriers to Decarbonization

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

Insights from Empire Building Challenge

Large commercial and residential buildings must overcome various hurdles before implementing deep retrofits or capital projects that help achieve building decarbonization. This section addresses technical barriers and questions often faced by building owners and retrofit project developers.

Decentralized Systems and Tenant Equipment

  • Access to Occupied Spaces.
  • Lease Concerns.
  • Regulatory Limitations of Rent Stabilized Apartments.
    • The building owner is required to provide free heat and hot water.
    • No mechanism to recover investment in new systems is necessary to achieve decarbonization.
    • Buildings are capital constrained.
  • Split Incentives (e.g. tenants pay for energy).

Facade and Windows

  • Work must be completed at the end of facade/window useful life; very long useful life.
  • Building codes.
  • Glazing reduction at odds with aesthetic/marketability concerns.
  • Difficult installing with occupied spaces.
  • Reduce Local Law 11 recurring cost via overcladding
    • Aesthetic concerns
    • At odds with historic preservation
    • Capital intensive
    • Lot line limitations
  • Technology Limitations
    • Need higher R-value/inch for thinner wall assembly:
      • Vacuum insulated panels
      • Aerogel panels/batts
      • Zero-GWP blowing agents for closed cell spray foam (nitrogen blowing agent needs to be more widely adopted)

Ventilation

  • Energy Recovery Ventilation (ERV)
    • Space constraints
    • System tie-in point accessibility/feasibility
  • Rooftop Supply Air (Reznor) Unit Alternatives
    • Heat pump alternatives to eliminate resistance heat
    • Combine with ERV
  • HVAC Load Reduction (HLR) Technology
    • Vent or capture exhaust gases
    • Space constraints
    • System tie-in point accessibility/feasibility
  • Central vs. Decentralized Ventilation Systems
  • Direct Outside Air System (DOAS)
    • Modular perimeter ducted air heat pumps:
      • Competition for leasable space
      • Space constraints
  • Ventilation Points-of-Entry
    • Aesthetic concerns
    • Lot line facades/building setbacks
    • Competition with leasable space
    • Space constraints

Heat Pump Limitations

  • Variable Refrigerant Flow (VRF)
    • Fire and life safety concerns about volume of refrigerant gas located within occupied spaces.
  • Regulatory risk from new refrigerant policies
  • PTAC and VTAC
  • Ducted Supply/Exhaust Air Source Heat Pumps
  • Domestic Hot Water
    • Central DHW Systems:
      • Limited domestic production.
      • Performance not confirmed by independent third parties.
      • More demonstration projects needed.
    • Decentralized DHW Systems
  • More open-source interconnection between devices/interoperability is needed to achieve energy distribution flexibility and capacity expansion:
    • Air source that has a manifold connection to interconnect with water source or refrigerant gas distribution.
    • Interconnectivity/simplified heat exchange between refrigerants/water/air, etc.
    • Other options and add-ons.

Steam Alternatives and Barriers

Below are high temperature renewable resource alternatives to district steam. These alternatives are limited and face barriers to implementation due to cost, scalability, and other factors. 

  • Deep Bore Geothermal
  • Renewable Hydrogen
  • Carbon Capture and Sequestration
  • Biomethane
  • Electric Boilers
  • High-temperature thermal storage
  • Hight-temperature industrial heat pumps
  • Waste Heat Capture and Reuse
  • Fission

Barriers to Electrification and Utility Capacity Limitations

Building Electric Capacity Upgrades

  • Electric riser capacity
  • Switchgear expansion
  • New service/vault expansion/point-of-entry space constraints
  • Capacity competition with other electrification needs:
    • Space heat and cooling
    • DHW
    • Cooking
    • Pumps and motors

Local Network Electric Capacity Upgrades

  • Excess Distribution Facility Charges (EDF)
  • Contributions in Aid of Construction (CIAC)

Gas Utility Earnings Adjustment Mechanisms (EAM) focused on System Peak Demand Reductions

  • Partial Electrification concepts achieve deep decarbonization but do not necessarily achieve peak gas demand reductions (debatable)

Total Connected Loads and Peak Demand drive need for capacity upgrades

  • Demand reduction strategies do not obviate capacity limitations unless the utility accepts the solution as a permanent demand/load reduction strategy.
    • Battery Storage:
      1. Fire danger
      2. Space constraints
      3. Electricity distribution limitations
      4. Structural loads
    • Building Automation/BMS/Demand Response:
      1. Cost
      2. Integration limitations; Blackbox software
      3. Microgrid development cost and lack of expertise
    • On-site Generation:
      1. Space constraints
      2. Gas use; Zero carbon fuels availability is non-existent
      3. Structural loads
      4. Pipe infrastructure

Thermal Storage

  • Space constrains
  • Structural loads
  • Technology limitations:
    • Vacuum insulated storage tanks
    • Phase change material (DHW, space heating)

Geothermal (ambient temperature), Deep Bore Geothermal (high temperature) or Shared Loop District Energy Systems provide cooling and heating with lower peak demand than standard electric equipment

  • Building pipe riser limitations; need additional riser capacity:
    • Building water loops are typically “top down” – cooling capacity is typically located at rooftop mechanical penthouses; cooling towers at roof. Some exceptions to this rule
    • Space Constraints
  • Drilling Difficulty:
    • Outdoor space constraints for geothermal wells
    • Difficult permitting
    • Mud and contaminated soil disposal
    • Overhead clearance constraints for drilling in basements/garages 
  • Shared Loop/Thermal Utility Limitations:
    • Requires entity that may operate in public ROWs and across property lines
    • Utilities are limited by regulations for gas, steam or electric delivery versus shared loop media (ambient temperature water).
      1. Only utility entities can provide very long amortization periods
      2. Utilities are best suited to work amid crowded underground municipal ROWs.
  • Deep Bore Geothermal Limitations:
    • Requires test drilling and geological assessment
    • Seismic risk
    • Drilling equipment is very large – more akin to oil and gas development equipment
    • Subsurface land rights and DEC restrictions

Other Energy Efficiency/Conservation Measures with proven/attractive economics (these measures are limited by lack of capital or knowledge)

  • Lighting with lighting controls
  • High-efficiency electrically commutated motors (ECM)
  • Variable Frequency Drives (VFD) on pumps and motors
  • Retro-commissioning tasks and maintenance

Behavioral Modification

  • Staggered work scheduling
  • Telework

Submetering and billing, potentially creates split incentive between landlord and tenant

Crossover Device or “Magic Box” Technology

These include multi-purpose technology for heating, cooling, heat exchange and ventilation, filtration, and/or domestic hot water.

  • Domestic production and supply chain is limited.
  • Small players operating in this space.
  • Technology is not tested over long operational periods (providers include: Daikin, Nilan, Zehnder, Drexel und Weiss, Minotair, Build Equinox, Clivet).

Zero Carbon Fuel Limitations

  • Green Hydrogen
  • Renewable Natural Gas

Low-Carbon Fuels

  • Biofuel
  • Biomethane

Renewable Energy Procurement Limitations

  • REC Purchasing:
    • NYSERDA monopolizes REC purchasing from renewable energy projects.

Pending Carbon Trading Programs Limitations

  • Deployment timeline is highly uncertain.
  • Price per ton of carbon is highly uncertain and will likely be volatile/low based on previous emissions trading scheme outcomes.

More Like This

Sorry, no content found.

Case Study

Low Carbon Multifamily Retrofit Playbooks

A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.

Building System Conditions
Asset Conditions
Market Conditions

Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.

Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.

Retrofit Costs

Decarbonization Costs

Avoided Risks

Business-as-Usual Costs

Avoided Risks

Business-as-Usual Risks

Added Value

Decarbonization Value

Net Present Value

An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.

These playbooks summarize retrofit strategies that maximize occupant comfort and energy savings through a transition from fuel to electricity- based heating, cooling and hot water systems.

Playbooks are organized by building system— lighting & loads, envelope, ventilation, heating & cooling, and domestic hot water– detailing common existing systems, typical issues, and recommended measures.

More Like This

Sorry, no content found.