660 Fifth Avenue, developed by Brookfield Properties, highlights how a building redevelopment can be leveraged by property owners to improve functionality and efficiency of building systems, setting a successful precedent for high-rise offices of the future. The 41-story, 1.4 million square foot commercial property was built in 1957 and is currently completing a full redevelopment to modernize the building.
The decarbonization plan for 660 Fifth Avenue involves a phased approach from 2023-2035 to electrify heating and eliminate steam usage through measures such as expanding the building’s thermal network, installing water-to-water and air-to-water heat pumps, and fine tuning HVAC sequences, with the goal of reducing site EUI by 59.8% and greenhouse gas emissions by over 6,500 metric tons annually.
Brookfield Properties is a fully integrated, global real estate services company that owns and operates 40 million square feet of office, residential, hotel, and retail property in New York.
Project Highlights
Emissions Reductions
2035
Brookfield will achieve net-zero annual carbon emissions by 2035 at 660 Fifth Avenue.
Testimonial
“We’re excited to demonstrate our continued commitment to achieving net zero carbon by partnering with leading industry professionals and NYSERDA to identify scalable, effective solutions to drive meaningful reductions in carbon emissions in our properties. We see immense opportunity in collaborating in these types of initiatives to support the successful transition to a net zero economy.”
Michael Daschle
Senior Vice President, Sustainability
Brookfield Properties
Lessons Learned
Modern heat recycling and fresh air systems help Brookfield meet accelerated climate goals.
Step 1
Step 1: Examine Current Conditions
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
System Failure
Equipment nearing end-of-life
Damage from events
Tenant load change
Comfort improvements
Indoor air quality improvements
Facade maintenance
Efficiency improvements
Asset Conditions
Repositioning
Recapitalization
Capital event cycles
Tenant turnover/vacancy
Carbon emissions limits
Tenant sustainability demands
Investor sustainability demands
Building codes
Owner sustainability goals
Market Conditions
Technology improves
Market demand changes
Policy changes
Utility prices change
Brookfield Properties is leveraging the redevelopment of this property to integrate decarbonization solutions that will upgrade its internal systems, reducing its reliance on fossil fuels and positioning it for full decarbonization by 2035. Brookfield Properties acquired its interest in 660 Fifth in 2018 with the intent to redevelop and reposition the property into an iconic, trophy-class office building. The redevelopment plan included a full facade upgrade to create the largest windows in New York City redevelopment history, as well as full upgrades to the property’s mechanical systems resulting in a 60% EUI reduction and 40% water use reduction at the property. In addition to major operating expense savings as result of such improvements, the property will also be able to lease space for significantly more, helping accelerate the return on investment. Further, the redevelopment shifts a majority of the property’s energy usage from steam to electric, positioning it well for performance relative to Local Law 97 requirements and enabling a 97% reduction in greenhouse gas emissions from energy when the property started sourcing 100% renewable electricity in the fall of 2023.
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Existing Conditions
This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.
Click through the measures under “Building After” to understand the components of the building’s energy transition.
Sequence of Measures
2022
2023
2024
2026
Building System Affected
heating
cooling
ventilation
Reduce Energy Load
Brookfield is incorporating several measures to immediately reduce the building’s steam demand and enable strategic implementation of low-carbon heating solutions. These include:
Replacing single pane windows with an insulated curtain wall.
Replacing steam turbine chillers with electric chillers.
Installing a full energy recovery dedicated outdoor air system (DOAS), which separates the building’s ventilation system from the heating system and allows each to operate independently.
Next steps include optimizing the existing hydronic system to operate at lower heating hot water supply temperatures and enable integration of air source heat pumps in the future.
Recover Wasted Heat
This project utilizes water source heat pumps in a variety of heat recovery and reuse applications to dramatically reduce steam use throughout the building by applying resource efficient electrification. The team looks to maximize heat recovery by integrating retail and tenant supplemental cooling loops to the main condenser water loop. Heat recovery measures being implemented include:
Thermal Network Expansion: connecting retail tenant condenser water loop to main condenser water loop to maximize waterside heat recovery potential
Waterside Heat Recovery: recapturing heat from condenser water loop using water source heat pumps (WSHPs) in the building’s lobby, garage, and hot water production
Energy Recovery Dedicated Outdoor Air System (DOAS): recapturing heat from ventilation exhaust to condition make up air and replacing high pressure induction system with energy recovery units
Partial Electrification
After maximizing energy load reductions and recovering rejected heat, electrification solutions will be pursued, including:
Electric Chillers: replacing steam turbine chillers to electric chillers
Air Source Heat Pumps (ASHPs): installing ASHPs to provide supplemental heating by injecting hot water to the condenser water or hot water circuits
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Capital costs of decarbonization for entire repositioning.
Business-as-Usual Costs
Energy cost savings.
Business-as-Usual Risks
LL97 fines beginning in 2030.
Decarbonization Value
Incentives.
Net Present Value
Net difference between the present value of cash inflows and outflows over a period of time.
The business case for the decarbonization project at 660 Fifth Avenue was analyzed by comparing the net present value (NPV) and return on investment (ROI) of the proposed energy conservation measures against the original redevelopment scope and budget. The analysis considered factors such as implementation costs, operational cost savings from reduced steam and electricity consumption, increases in property value, and the impact of potential Empire Building Challenge funding.
Key findings from the business case analysis include:
The NPV of the project including Phases 0-2 plus renewable energy credits (RECs), offsets and EBC funding is $99.2 million compared to $99.7 million for the original redevelopment scope, indicating the decarbonization measures are NPV positive.
The marginal cost of decarbonization, at $9.72 million for Phases 0-2, represents only about 2.7% of the total $355 million repositioning budget, yet is projected to reduce site EUI by nearly 60% and carbon emissions by over 6,500 tons annually.
The proposed measures are estimated to generate an unleveraged 17.9% internal rate of return (IRR) with EBC funding compared to 6.7% without it, showing the important impact of public-private partnerships.
Annual ROI is projected to ramp up to 18-19% by 2035, creating significant long-term value.
The decarbonization efforts tie into Brookfield’s broader sustainability goals and ESG strategy across its portfolio. With over 29 million square feet of property potentially impacted, the replicable measures piloted at 660 Fifth Avenue can be a model for achieving cost-effective carbon reductions at scale. The strong business case, boosted by EBC funding, helps justify the capital allocation and paves the way for wider adoption.
While the added costs and complexity compared to business-as-usual upgrades do present risks, the robust returns, replicability, and climate benefits make a compelling case that deep energy retrofits can be a win-win for the owner, tenants, city and environment. The business case will be further bolstered as equipment costs decline, climate regulations tighten, and demand grows for low-carbon buildings.
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
Insights from Empire Building Challenge
Improved engineering design means and methods are needed to enable and speed adoption of low-carbon retrofit technologies. High performance, low-carbon heating and cooling systems are widely available but are underutilized in the United States due to a variety of misconceptions and a lack of knowledge around thermal system interactions. Few practicing engineers prioritize recycling heat and limiting heat loss. Decarbonization requires upgrading and adapting energy distribution systems originally designed to operate with high temperature combustion to integrate with electric and renewable thermal energy systems. The engineering design industry can use a thinking framework like Resource Efficient Decarbonization (RED) to deliver projects that achieve more effective decarbonization.
This framework emerges from the Empire Building Challenge through continued collaboration among real estate partners, industry-leading engineering consultants, and NYSERDA. RED is a strategy that can help alleviate space constraints, optimize peak thermal capacity, increase operational efficiencies, utilize waste heat, and reduce the need for oversized electric thermal energy systems, creating retrofit cost compression. While RED is tailored to tall buildings in cold-climate regions, the framework can be applied across a wide array of building types, vintages, and systems. The approach incorporates strategic capital planning, an integrated design process, and an incremental, network-oriented approach to deliver building heating, cooling, and ventilation that:
Requires limited or no combustion,
Enables carbon neutrality,
Is highly efficient at low design temperatures and during extreme weather,
Is highly resilient, demand conscious, and energy grid-interactive,
Reduces thermal waste by capturing and recycling as many on-site or nearby thermal flows as possible, and
Incorporates realistic and flexible implementation strategies by optimizing and scheduling phase-in of low-carbon retrofits competing with business-as-usual.
Decarbonization Framework
Resource Efficient Decarbonization focuses on implementing enabling steps that retain a future optionality as technology and policy evolves. This framework allows a building owner or manager to take action now, instead of waiting for better technology and potentially renewing a fossil-fueled powered energy system for another life cycle.
The figure below illustrates a conceptual framework for accomplishing these objectives and overcoming the barriers. Specific measures and sequencing will be highly bespoke for a given building, but engineers and their owner clients can use this bucketed framework to place actionable projects in context of an overarching decarbonization roadmap.
Step-by-Step Process to Advise Decarbonization Efforts
Understanding a building’s fossil fuel use in detail is a critical first step. Make an effort to understand when, where, how, and why fossil fuels are being consumed at the building and under what outdoor temperature and weather conditions. Conduct a temperature BINS analysis to know how much fossil fuel is consumed during various temperature bands (typically in 5- or 10-degree increments) from design temperature up to the end of the heating season. Make an effort to understand cooling season usage patterns in detail. Go further and conduct an 8760 hour/year analysis or modeling effort to show building operation profiles with high granularity to advise targeted elimination of fossil fuel consumption.
While electrification is desirable to combat climate change, energy efficiency is a critical component of decarbonization. Reducing heating and cooling loads across all weather conditions is a major early step to achieve RED.
Identify the ways heat is being gained or lost. Hint: some places to look at are cooling towers, facades and windows, elevator machine rooms, through sewer connections, or at the ventilation exhaust system. Cooling towers operating in the winter are an obvious energy wasting activity. Seek solutions to reduce, recover, and recycle or reuse, and store this heat.
After, or in parallel with the previous steps, begin to electrify the building heat load, starting with marginal “shoulder season” loads (spring and fall). Don’t force electric heating technology such as air source heat pumps to operate during conditions for which they weren’t designed. Optimize heat pump implementation through a “right sizing” thermal dispatch approach to avoid poor project economics and higher operating expenses. This means continuing to retain an auxiliary heating source for more extreme weather conditions until fossil fuels are ready to be fully eliminated. This approach provides owners time to identify the right peak period heating solution while allowing them to act early in driving down emissions. Emissions reduced sooner are more valuable than emissions reduced in the future.
Remove connections to fossil fuels and meet decarbonization deadlines!
Take Actions with these Enabling Steps
Review
Disaggregate time-of-use profiles to identify heat waste and recovery opportunities and to right-size equipment.
Thermal dispatch strategy: layering heat capacity to optimize carbon reduction and project economics.
Reduce
Repair, upgrade and refresh envelopes.
Optimize controls.
Reconfigure
Eliminate or reduce inefficient steam and forced air distribution.
Create thermal networks and enable heat recovery.
Lower supply temperatures to ranges of optimal heat pump performance.
Segregate and cascade supply temperatures based on end-use.
Recover
Simultaneous heating and cooling in different zones of building.
Eliminate “free cooling” economizer modes.
Exhaust heat recovery; absorbent air cleaning.
Building wastewater heat recovery.
Municipal wastewater heat recovery.
Steam condensate.
Refrigeration heat rejection.
Other opportunistic heat recovery and heat networking.
Store
Store rejected heat from daytime cooling for overnight heating.
Store generated heat— centrally, distributed, or in the building’s thermal inertia.
Deploy advanced urban geothermal and other district thermal networking solutions.
Building Systems Topologies
Commercial Office
Commercial office buildings offer significant heat recovery and storing opportunities due to simultaneous heating and cooling daily profiles. As a result, offices can heat themselves much of the year with heat recovery and storage. Example load profiles for typical heating and cooling days in a commercial office building are shown in the graph below.
Multi-family
Multi-family buildings’ typical daily profiles show efficiency opportunities that can lower and flatten system peaks. This can be achieved by a variety of heat reduction, recovery, and storing strategies. Example load profiles for a typical heating day in a multifamily building are shown in the graph below.
Thermal Distribution Opportunities
The thermal energy network approach enables transaction of thermal energy to increase overall system efficiency and reduce wasted heat. The concept can be applied at the building level (with floor-by-floor heat exchange), to groups of buildings, to whole neighborhoods, or to cities. Below is an illustration of a whole-system, thermal network approach applied in an urban environment to supply clean heat in cold-climate tall buildings:
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
Insights from the Empire Building Challenge
A calibrated energy model should play a central role in building out a decarbonization plan because it provides insights on:
Current building energy and carbon profiles, and costs.
Potential energy, carbon, and cost savings of energy conservation measures (ECMs.
The impact of groups of ECMs, and the order of implementation and timeline.
The steps to follow include:
An initial energy model is developed using commonly available building information such as architectural floorplans, MEP schedule sheets, and BMS sequences of operation.
The initial model is then refined and “calibrated” to the building’s real utility data for each utility consumed, creating a baseline condition that ECM’s will be compared against.
The baseline energy model is used as a test bed for individual ECMs to understand potential energy, carbon, and cost impacts.
Evaluate the financial performance of each ECM. These results will be used to identify strategies that are economically viable and should be considered further.
Those ECMs that are economically viable on their own may be grouped together with other ECMs to help build a holistic business case for system optimization and maximum carbon reduction.
During the evaluation process, the project team should take the evolving emission factors associated with utilities such as electricity and steam, as well as the impact of rising average and design day temperatures/humidity, into account.
Key outputs from the energy modeling workflow should include data driven charts showing energy end use breakdown and costs, carbon footprint of each utility, building carbon emissions vs. LL97 targets and fines, and who “owns” the carbon footprint (i.e. tenants, building operations). It is important to note that not all energy models are created equally. For a deep energy retrofit project, the accuracy of the energy model should align with ANSI/ASHRAE/IES Standard 90.1. Code or LEED energy models that were developed for the building in the past are not appropriate for this effort.
Below is a selection of the energy modeling software packages used to support the case study findings presented in this Playbook, and throughout the industry.
An energy model is developed in multiple phases. In the first phase, the energy modeler must build an initial model that captures the geometry, material attributes, occupancy types, MEP systems and basic information about the building’s operations. The energy modeler should also include surrounding buildings that may impact sun exposure on the different facades of the building under study. This initial model will produce a rough estimate of how the building performs every hour during the year. Then in the next phase, the energy modeler must hone the model’s accuracy by “calibrating” the initial model to utility data and detailed building operations information. Code or LEED energy models that may have been created for the building during its initial design and construction should not be used in deep energy retrofit study efforts because they do not reflect the actual performance of the building under study.
Lessons Learned and Key Considerations
Determine energy model accuracy expectations early: Energy model accuracy can vary widely. For a deep energy retrofit study, the energy model should be highly accurate and align with ANSI/ASHRAE/IES Standard 90.1. Building management teams should set model accuracy expectations with the energy modeler at the onset of the project. This will help inform how assumptions are made and where the modeler should or should not simplify certain aspects of the model.
Energy model calibration takes time but is worth the investment: Calibrating the initial energy model is a continuous and iterative process that can span multiple days or weeks depending on the complexity of the building. This time investment is well worth it because the quality of the energy modeling results is directly dependent on the quality of the calibration effort.
Sync energy modeling assumptions with site observations: Even well-maintained buildings with stringent base-building and tenant standards have operational nuances and anomalies. Equipment may be shut off or sequences may be manually overwritten because the system wasn’t commissioned, wasn’t correctly integrated with the BMS, or was causing a localized issue that required a quick fix. This is especially true for older existing buildings that have had operations team turnover resulting in a loss of institutional knowledge over the years. For the energy model to accurately capture savings for ECMs, the calibrated model must reflect real-life operation. The project’s energy modeler should capture these nuances in the calibrated model whenever possible.
Perfection is the enemy of “good enough”: The energy model will never perfectly simulate the performance of the building. There will also be a margin of error that comes from very specific nuances in building construction or operation that can’t be captured by simulation-based software. The project team should set reasonable expectations for the level of modeling and calibration effort that aligns with AANSI/ASHRAE/IES Standard 90.1 but also conforms to the project schedule and status.
Share model visualization with the project team: Energy modeling can be a complex topic that may seem inaccessible to non-technical audiences. To maintain good project team engagement during the energy modeling phase, the energy modeler should prepare and share data visualizations that can help tell the story of how the building uses energy. Graphs, rendering, and infographics are great examples of visual assets that can demystify the energy modeling process.
2. Create the Baseline Energy Model
The baseline model represents the current systems and operations of the building, adjusted for “typical” weather conditions and other criteria. Energy savings for all proposed ECMs will be calculated relative to the baseline model performance.
Inputs
The calibrated energy model
TMY weather data
List of planned upgrades, tenant lease turnover schedules
Activities
Make Necessary Adjustments to the Baseline Model: To create a baseline energy model, the calibrated energy model consumption should be adjusted to account for the following:
Weather: Typical weather data for the site can be modeled using TMY3 data files, which capture and compare typical performance and eliminate any extreme weather event effects that may have occurred in the baseline year. TMY3 files are produced by the National Renewable Energy Laboratory and can be freely accessed and downloaded from the EnergyPlus website.
Occupancy (Lease Turnover or COVID): The baseline energy model should be adjusted to account for any fluctuations in building occupancy that are expected to occur over the study period. For example, tenant lease turnover schedules should be collected during the Discovery Phase and accounted for in the baseline model. Similarly, any disruptions to building occupancy, such as those experienced during the COVID 19 global pandemic, should be captured in the baseline model. To understand the full magnitude of ECM impacts, it is important to separate energy reductions resulting from ECMs versus those resulting from lower occupancy levels.
Planned Upgrades: The baseline model should be adjusted to account for any planned projects that will impact the building’s energy consumption. By capturing these savings in the baseline model, the project team will avoid projecting ECM savings that are no longer available because they have already been captured by planned projects.
The baseline model represents “business as usual” building energy consumption and associated energy cost. It is the reference point used to determine the energy savings of potential ECMs and track progress towards reaching project objectives.
Generate Detailed End-Use Breakdowns: Once the baseline energy model is complete, the project team can begin to gain additional insight into how the building uses energy. A particularly useful output of the model is a detailed end-use breakdown like the one shown below:
The energy modeler will be able to analyze this end use breakdown and identify systems that appear to be high energy consumers. Hypotheses should be vetted by the engineer and facilities team based on their understanding of the building.
Document Assumptions and Review Initial Results with the Team: After the initial baseline model has been built, the energy modeler should review his/her/their assumptions and the resulting load breakdowns with the project team. The modeler should then solicit feedback from the engineers and building operators who have greater insight into the current building operation and systems design. Feedback should be incorporated into the next iteration of the baseline model. The feedback loop between the energy modeler and the building team will be an iterative process that will continue throughout the duration of the project as more information is collected from the building.
Overlay Carbon Emissions: Once the baseline energy consumption results are refined, the associated operational carbon emissions can be calculated by multiplying the annual energy consumption by a fuel-specific carbon coefficient. Carbon coefficients represent the greenhouse gas emissions intensity of different energy sources and are used to determine a building’s total greenhouse gas emissions in tons of CO2 equivalent. This analysis will identify the primary contributors to greenhouse gas emissions in terms of fuel type, system, and ownership (end-user that is driving the demand).
Refine the Preliminary List of ECMs: At this point, the energy modeler and engineer should work together to refine the preliminary list ECMs that was developed in the “Build the BAU Base Case” task. The additional information gleaned from the detailed end use breakdown should be used to validate the initial list of measures and to identify new areas of focus that were not identified in early phases of the project.
Outputs
Deliverables from the baseline energy model work include the following:
Baseline energy model is a reference for potential energy, carbon and cost savings
Building energy consumption and detailed end use breakdowns
Documented baseline system assumptions
Finalized List of ECMs for study in the energy model
Lessons Learned And Key Considerations
Document and review input assumptions: A robust energy model can be a reusable tool that can serve the building team for many years after the initial deep energy retrofit study. To ensure the information within the model is accurate and up to date, any inputs and assumptions should be documented and shared with the building management team. This will give the team the opportunity to correct any assumptions that do not align with the actual operation of the building and will create a log where inputs can be revised and updated as the building evolves.
3. Analyze Individual ECMs
In this task, the energy modeler will run all ECMs in the energy model and extract associated energy, carbon, and cost savings for each. For this task, the energy modeler will need the baseline energy model and the finalized list of ECMs that will be evaluated.
Inputs
For this task, the energy modeler will need the baseline energy model and the finalized list of ECMs that will be evaluated.
Activities
Develop a Modeling Strategy for Each Energy Conservation Measure (ECM): Before the modeler begins modeling each ECM, he/she/they should develop a modeling strategy for each measure including performance characteristics and any important assumptions. Documenting model inputs and modeling strategy for each ECM will make it easier to troubleshoot if there are any surprising results.
Run ECMs in the Model and Analyze Results: Once all ECMs are explicitly defined and the modeling strategy has been finalized, the modeler will run each ECM to create a proposed energy model. The proposed energy model is compared to the baseline energy model to estimate energy, carbon and cost savings. The energy modeler will extract savings for each ECM from the proposed model, which will enable the team to study the individual impact of each ECM and vet the results. Energy savings for individual ECMs should be compared to industry experience to gauge their validity. When surprising results arise, the team must explore why and either justify the inputs or modify them according to additional information.
Refine and Troubleshoot as Needed: Assumptions may need to be revised after this initial review of the results, especially if there are unexpected results.
Compare Mutually Exclusive ECMs: In some cases, the team may develop mutually exclusive ECMs. These competing ECMS must be compared to determine which is the most energy efficient and by what margin. The energy model can be used to run multiple ECM options and compare estimated energy savings between them. The project team should decide which mutually exclusive ECMs should be advanced into the future rounds of analysis before packaging ECM in the next phase of modeling.
Assess Maximum Theoretical Potential for Energy Savings: The final energy consumption of the proposed model will factor in all the energy savings associated with the ECMs. This resulting value is the theoretical minimum energy consumption for the building, assuming all technically viable ECMs are implemented. At this point it is helpful to determine the percent reduction from the baseline and evaluate how this theoretical minimum stacks up to the project objectives. Important questions to answer include:
Does the theoretical minimum energy consumption meet or exceed the project’s energy and carbon goals, and if so by how much?
Which ECMs contribute most significantly to energy and carbon reductions and are they likely to be financially feasible?
Are most of the energy savings attributable to a few select ECMs or are energy savings spread evenly amongst many small measures?
The analysis of the energy modeling results can be facilitated by the creation of ECM waterfall charts which show the baseline energy consumption / carbon emissions and the progressive impact of each ECM on these values. The final energy consumption and carbon emission of the proposed model will establish the theoretical minimum.
Outputs
Outputs and deliverables of this work include:
Initial energy, carbon, and cost savings for individual ECMs. Based on this initial review and analysis, the team will identify further data collection required to refine the modeling assumptions and improve the accuracy of the outputs.
Actionable information regarding which mutually exclusive ECMs are most impactful and should be advanced to the next phase of modeling.
The maximum theoretical energy savings and carbon reduction for the building. This will give the project team an indication of how many ECMs may need to be implemented to meet the project objectives.
Initial energy cost savings for each measure, which can be used to inform preliminary financial analyses.
Lessons Learned & Key Considerations
Review and question surprising results: When reviewing preliminary energy savings, it is important to make sure that the results make sense and question any surprising results. The energy modeling results are only as accurate as the modeling inputs. These assumptions must be vetted to ensure accurate savings. Data collection during this time will be useful to determine modeling assumptions. Assumptions can also be informed by the insights and advice from industry experts. Energy modeling is an iterative process, and the model will continue to be refined as more information is collected.
Identify high priority ECMs: Preliminary results may indicate that most of the energy savings available are attributable to a select number of ECMs. Implementing these select few ECMs may be all that is required to meet the project’s short-term objectives. The project team should focus on refining the inputs for these high impact ECMs to ensure accurate savings.
Remember many small measures have a cumulative impact: To maximize savings and meet long-term project objectives like 80×50 it is likely that a wider array of ECMs will need to be considered for implementation. This holds true especially for buildings that have undergone recent renovations where the most impactful ECMs have already been executed. In this case it may be necessary to evaluate the cumulative impact of many small measures. Therefore, individual measures with minor carbon reduction impacts should not be dismissed too quickly.
4. Group, Sequence, and Package ECMs
As the Energy and Carbon Modeling phase is progressing, a preliminary financial analysis of individual ECMs will also take place in parallel. Preliminary results from the financial analysis will help inform this phase of modeling. Individual ECMs should not necessarily be discarded based solely on their associated capital cost; expensive ECMs can be grouped together with related financially viable measures to optimize savings and make a more comprehensive business case that maximizes CO2 reduction while still addressing investment return hurdles.
Once ECMs have been grouped, an implementation duration and timeline should be established for each. This will depend on factors like short term project budgets, tenant lease turnover, operational budgets, and maintenance schedules. The ECMs should then be sequenced according to their implementation timeline so that energy savings for each ECM can be captured accordingly.
Finally, several ECM packages should be assembled for owner evaluation. Each package will include a different combination of ECMs to be implemented with varying degrees of cost and carbon impact. This variety will provide the owner with options to choose from when striving to balance the project objectives and constraints.
Inputs
For this task the project team will need the following inputs:
Energy, carbon & cost savings from the proposed energy model
Preliminary ECM capital costs estimates: Preliminary results from the financial analysis will provide approximate NPV values for each ECM based on the projected energy cost savings and capital costs. These results will be used to identify those ECMs that are economically viable on their own, those that are worth pursuing due to large carbon impact, and those that should be discarded at this point due to technical infeasibility, cost, or low carbon impact. Those ECMs that are economically viable on their own may be grouped together with related, and costly, but effective, ECMs to help build a stronger business case.
Outputs
Outputs and deliverables of this task include the following:
Finalized grouped and sequenced ECM list.
Results from Packaged ECMS for Owner consideration.
Activities
Establish the Final List of ECMs: Once a preliminary financial analysis has been conducted and approximate NPV values and energy and reductions are calculated for each ECM, the list of measures should be reviewed and finalized. Typically, ECMs will fall into the 5 categories described below, with associated outcomes:
ECM has a positive NPV and has a large carbon impact. ECM should be considered seriously for implementation. Additional QA/QC should be completed to ensure savings are accurate.
ECMs that has a positive NPV but has a minor carbon impact. ECM should be evaluated collectively with other measures, as the impact of many small measures can compound.
ECM has a positive NPV and has a large carbon impact but is technically challenging or infeasible. ECM should likely be eliminated because it will not seriously be considered for implementation by the Owner or building operations team
ECM has a negative NPV (simple payback may still be within the useful life of the ECM) but has a large carbon impact. Financial case for the ECM should be investigated further – the incorporation of maintenance costs, baseline requirements or planned capex unrelated to emissions reductions, and potential incentives in the financial model may improve the financial performance.
ECM has a negative NPV and a small carbon impact. ECM should be eliminated.
Group and Sequence the ECMs: Once the list of ECMs has been finalized, the project team should determine the anticipated duration of time required for completion and the implementation sequence. There are various considerations that should be understood during this part of the modeling process:
The timing of implementation will be unique to each building and vary depending on the types of existing systems and their age and performance. Well maintained systems may be able to be updated and optimized in the short term and replaced in the long run depending on the project objectives.
The sequence of ECMs will depend on various factors including tenant lease turnover schedules, maintenance schedules, and investment cycles.
Interrelated and codependent ECMs should have the same timeline and/or be sequenced appropriately. Some ECMs should be considered as a group to help make a financial case for optimized carbon reductions.
The impact of the ECMs will decrease as the sequence progresses, and savings will be less than if they were directly compared to the initial baseline. This is because as each new ECM is executed and absorbed into the baseline model, this “new” baseline model against which new ECMs are compared performs more efficiently, thereby decreasing the potential for savings.
Create ECM Packages: Once the ECMs have been sequenced, various implementation packages should be compiled for final evaluation. Given that implementing all ECMs will likely be cost prohibitive, the project team should provide the owner with different options along the spectrum of project cost and carbon reduction.
To book end the problem, it is recommended that two of the proposed packages be a “CO2 Maximum Reduction” package and an “NPV Maximum” package. These packages are described below:
CO2 Maximum Reduction: Package includes all technically viable measures, even if they are not economically viable at the time of the analysis. The purpose of this package is to find the technical maximum CO2 reductions achievable.
NPV Maximum: Package includes only those measures that payback within the study period and have positive NPVs. These are the minimum CO2 reductions that can be expected with a financially viable package.
Additional packages should be created and evaluated based on feedback from the project team. These hybrid packages will allow the owner to choose from a wide range of options with different value propositions.
Lessons Learned & Key Considerations
Visualize the results: A helpful tool for analyzing ECMs results is a 2 x 2 matrix that shows the NPV vs. the CO2 reductions for each ECM.
Consider non-energy benefits: Before eliminating measures because they have small carbon impacts, the project team should evaluate the non-energy benefits of the measure. If the non-energy benefits align with the owner’s overall sustainability strategy or make the building a more valuable asset, the building team may still wish to pursue the item. For example, a façade upgrade or replacement may not have a positive NVP but will make the building more competitive with newer buildings.
5. Generate a Decarbonization Roadmap
Once the finalized ECMs have been grouped, sequenced, and packaged, the energy model can be run to obtain final results. These results will be used in the detailed financial analysis and will represent a time-dependent decarbonization roadmap for the building. The final results will include energy savings, energy cost, and CO2 reduction for each package under study, and should phased according to the anticipated implementation timeline to reflect the gradual and overlapping impacts of each measure over a 20- or 30-year time horizon. CO2 reduction over a longer time horizon should include a changing electric grid carbon coefficient to account for grid decarbonization.
Inputs
The inputs for this task include:
The finalized ECM Packages
Carbon coefficients for the Future Grid
Activities
Run Final ECM Packages in the Model and Analyze Results: The modeler should update the proposed model based on the final list of ECM packages and intended implementation sequence. Energy results should be provided for each ECM, even if there are several ECMs that are intended to be grouped together, as this provides granular data for the financial analysis to be conducted down the line. This is important because each ECM may have distinct capital costs, maintenance costs, and incentive implications which may impact the financial viability of the measure.
To reduce the modeling time, it may be assumed that a given ECM’s savings are recognized at once, even if it is anticipated that the ECM and associated savings will be realized over a period of several years. These savings can be split proportionally according to the intended timeline in a post-processing exercise without a major impact on the results, so long as the sequence of the ECMs is correct.
Calculate Savings from the Baseline: The final run of the proposed energy model will produce energy, carbon and cost information that should be compared to the baseline energy model to determine anticipated savings. During this exercise, project teams should consider the following:
The energy model provides energy costs for each run, but it may be beneficial to conduct advanced tariff analysis that evaluates the anticipated annual hourly energy consumption for each package. Given the energy consumption results from the model, and the implementation timeline, a composite file of hourly data can be created to accurately reflect the percentage of each ECM that has been implemented each year. This will result in an energy consumption profile that reflects the expected annual peak and associated demand charges. More accurate utility costs can be calculated using this information. At a minimum, a utility cost escalator should be applied to the initial calculated energy cost savings to capture the impact of changing rates over time.
The anticipated CO2 emissions reductions associated with each ECM can be calculated by overlaying today’s carbon coefficients onto the energy savings results. For a greater level of accuracy, the carbon coefficients from LL97 can be overlaid on the annual energy consumption for the years where this data is available (2024-2029). Beyond 2029, project teams should consider different electrical grid decarbonization projections and overlay evolving carbon coefficients on the yearly energy consumption. For example, New York’s Climate Leadership and Community Protection Act (CLCPA) targets 70% renewable energy by 2030. Assuming the grid meets the goals and schedule of the CLPCA, the carbon coefficient for electricity for the year 2030 will be much lower than it is today.
Outputs
The final energy modeling results should include energy savings, energy cost savings, and CO2 reduction for each ECM package studied.
Lessons Learned & Key Considerations
Total carbon emissions depend on the building and the grid: While building owners have control over how efficient their building is, they cannot control the long-term decarbonization of the electrical grid. Building owners can and should evaluate how they can optimize the energy performance of their building through the implementation of ECMs, but the total associated carbon emissions produced by the building will depend on both the magnitude of the energy consumed and how carbon-intensive the source of energy is. For this reason, it is beneficial to understand how different grid scenarios and emissions factors impact the ECM results. A cleaner grid in 2030 may be the difference between meeting or exceeding the LL97 emissions limit for that year.
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
This guide presents a three-step process for real estate owners, in coordination with engineers and designers, to develop a technically and economically feasible decarbonization plan for their building. This holistic approach is informed by lessons learned from low-carbon demonstration projects funded through the Empire Building Challenge to help building owners develop and adopt successful plans for retrofitting their building.
High Rise / Low Carbon Event Series: Take the Heat!
Tags
Project Highlights
Step 1
Step 1: Examine Current Conditions
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
During this High Rise / Low Carbon series program developed to support the Empire Building Challenge (EBC) and other NYSERDA programs, this two-part event series–focused on building decarbonization–features industry experts highlighting projects deploying breakthrough heat recovery solutions across the commercial and multifamily buildings sector.
Part 1
Take the Heat! Part 1: Geo & Wastewater will showcase approaches to wastewater heat recovery and geothermal heat projects in New York City.
Opening Remarks
Molly Kiick, Project Manager, NYSERDA
Moderator
Greg Koumoullos, Project Manager, Customer Energy Solutions, Con Edison
Presenters
JP Flaherty, Managing Director, Global Head of Sustainability and Building Technologies, Tishman Speyer Ed Yaker, Treasurer, Amalgamated Housing Cooperative Mariel Hoffman, Director of Energy Engineering, EN-POWER GROUP
Panelists
Mariel Hoffman, Director of Energy Engineering, EN-POWER GROUP Jay Egg, President, Egg Geo JP Flaherty, Managing Director, Global Head of Sustainability and Building Technologies, Tishman Speyer Ed Yaker, Treasurer, Amalgamated Housing Cooperative
Part 2
Take the Heat! Part 2 will showcase approaches to ventilation and cooling heat recovery. The session will include presentation and discussion by three EBC partner teams: Vornado, with Jaros, Baum & Bolles (JB&B); Brookfield, with Cosentini; and LeFrak, with Steven Winter Associates.
Opening Remarks
Laziza Rakhimova, Energy Efficiency Business Development Manager, Con Edison
Moderator
Mike Richter, President, Brightcore Energy
Presenters
Christopher Colasanti, Associate Partner, JB&B Deep Carbon Reduction Group David Noyes, Project Executive, Brookfield Properties Jonathan Da Silva Johrden, Building Systems Director, Steven Winter Associates, Inc.
Panelists
Karen Oh, Vice President, Energy Innovation and Strategy, Vornado Realty Trust Christopher Colasanti, Associate Partner, JB&B Deep Carbon Reduction Group David Noyes, Project Executive, Brookfield Properties Jonathan Da Silva Johrden, Building Systems Director, Steven Winter Associates, Inc.
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
Insights from Empire Building Challenge
The following are terms commonly used in the building decarbonization universe:
Carbon Neutral Buildings:
Buildings that produce no net greenhouse gas emissions directly or indirectly. Carbon neutrality spans multiple scopes of associated greenhouse gas emissions including:operations on-site and via emissions associated with third parties delivering energy or products to site and embodied carbon emissions from the full lifecycle and production of construction materials. Emissions are often referred to as scope 1, 2 and 3. Essentially, scope 1 and 2 are those emissions that are owned or controlled by a company. Meanwhile, scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or controlled by it.
Coefficient of Performance (COP):
The ratio of the amount of heat delivered from a heat pump over the amount of electrical input. For example, a heat pump has a COP of 5.0, if it can deliver 5 units of heat for one unit of electricity input. A COP of 1.0 is typical for resistance heat (e.g., toaster or hair dryer).
Facade Overclad:
An additional weather barrier installed overtop an existing facade to increase building envelope energy performance, thermal comfort, and to reduce ongoing building maintenance.
Heat Recovery/Recycling:
The capture and reuse of waste heat often incorporating thermal storage techniques, see Time Independent Energy Recovery (TIER).
Net Present Value (NPV):
An analysis of project cash flow over a set period which incorporates inflation and the time value of money; the “upfront” lifetime value of a project. A positive NPV yields a Return on Investment (ROI).
On-site Fossil Fuel:
Fossil fuel consumed typically via combustion within a building for the purpose of heating, cooling, domestic hot water production, or power generation.
Return on Investment (ROI):
The ratio between net income and savings from a project investment over a set period. ROI is typically presented as a percentage for the period of one year.
Simple Payback:
Economic benefits yielded from investment in a project. Simple payback is typically presented in the time (e.g. years) it takes to recover an investment, but does not consider variations in cash flow over time or the time value of money.
Strategic Decarbonization Assessment (SDA):
A mid- to long-term financial planning method for building owners to manage carbon emissions and energy use.
Thermal Distribution:
The means by which thermal energy is moved throughout a building. This includes moving heat through various heat transfer mediums including but not limited to water, steam, refrigerant gas, or ducted air.
Thermal Energy Network (TEN):
Infrastructure that enables heat sharing through a number of thermal transfer mediums and between heat customers and producers who extract heat from multiple sources using varied technologies.
Thermal Storage:
The storage of thermal energy for later use, utilizing various mediums and technologies.
Waste Heat:
Heat or cooling which is typically rejected to the air and not recovered. Waste heat sources include sanitary sewer heat, heat rejected from air source heat pumps, cooling tower heat, heat lost from ventilation exhaust, steam condensate return, and underground transportation, among others.
Oldest US multifamily co-op transforms wastewater into clean energy
Tags
In Bronx, NY, the Amalgamated Housing Cooperative (AHC) embarked on a pioneering low carbon retrofit project at ‘The Towers,’ two 20-story buildings containing 316 affordable apartments across 425,000 square feet. Established in 1927, AHC is the oldest limited equity multifamily co-operative in the country.
The retrofit focuses on upgrading the heating and cooling infrastructure to enable simultaneous operation, diverging from the existing seasonal limitation. By introducing cutting-edge solutions including wastewater heat recovery and geothermal systems, AHC aims to harness energy from domestic water sources, thereby phasing out its reliance on cooling towers and decreasing fossil fuel consumption. This initiative not only promises enhanced thermal comfort and sustained affordability for its residents but also sets a benchmark for energy efficiency and climate resilience. The project’s success could potentially revolutionize energy management across similar multifamily complexes in New York State, demonstrating a scalable model for other buildings with similar heating and cooling system configurations– a total market estimated at 200 million square feet.
AHC’s commitment to its low-to-moderate income community underscores this ambitious venture, reinforcing its legacy and leadership in sustainable development.
Project Highlights
Emissions Reductions
93%
carbon emissions reduction on an all-electric site by 2035.
Lessons Learned
This project will make clean energy from dirty water by recapturing heat from sinks, showers, and toilets.
Lessons Learned
The project’s complete building re-piping decrease the future loaded needed for the planned geothermal heat pump system improving performance and comfort.
Scale
200 million SFof multifamily building stock for potential replication across New York State.
Step 1
Step 1: Examine Current Conditions
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
System Failure
Equipment nearing end-of-life
New heat source potential
Comfort improvements
Indoor air quality improvements
Facade maintenance
Resilience upgrades
Efficiency improvements
Asset Conditions
Recapitalization
Capital event cycles
Carbon emissions limits
Investor sustainability demands
Owner sustainability goals
Market Conditions
Technology improves
Policy changes
Infrastructure transitions
Fuels phase out
The Towers are two of 13 buildings that comprise AHC’s multifamily campus located in the Bronx. Many of the systems at the property, including the piping distribution system, are beyond their useful life and in poor condition, causing leaks and requiring continual repair and maintenance. The campus currently uses a central gas-powered boiler plant to produce steam for heating, cooling, and domestic hot water.
As part of its recapitalization cycle, the property is embarking on a decarbonization journey which will include a comprehensive retrofit of the heating, cooling, and domestic hot water systems, an envelope upgrade, and onsite renewable generation in the form of geothermal and solar PV.
This project will increase thermal comfort and secure utility affordability for its low-and-moderate income residents, as well as enhance the energy efficiency and climate resilience of the property.
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Existing Conditions
This diagram illustrates the building prior to the initiation of Strategic Decarbonization planning by the owners and their teams.
Click through the measures under “Building After” to understand the components of the building’s energy transition.
Sequence of Measures
2024
2026
2028
2030
Building System Affected
heating
cooling
ventilation
Reduce Energy Load
New hydronic distribution: Replace the dual temperature hydronic system with new piping supplying both heating hot water and chilled water simultaneously to provide heating or cooling year-round improving tenant comfort. The measure includes new fan coil units with more efficient motors and designed for low temperature heating hot water to reduce the load on the buildings and facilitate heat pump technology integration.
Envelope Improvements: roof insulation, window replacement and air sealing walls
Ventilation Maintenance: balancing and sealing of ventilation system to reduce exhaust air
Controls Upgrades: Install modern control system to automate and optimize new heat pump systems
Recover Wasted Heat
Wastewater Heat Recovery: Recapture heat from wastewater using WSHPs to produce heating, cooling, and domestic hot water (DHW). Use wastewater as heat sink in cooling mode to enable removal of old cooling towers.
Full Electrification
Ground Source Heat Pumps: Drill boreholes on property land and install WSHPs to produce heating, cooling and DHW. Use boreholes as heat sink in cooling mode.
Solar PV: Install solar PV system on rooftop
Electrify Appliances: install electric dryers and cooking equipment
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
$33M
Capital costs of decarbonization.
Business-as-Usual Costs
$29.5M + $35k / YR
BAU cost of system replacement.
Repairs & maintenance.
Business-as-Usual Risks
N/A
LL97 fines do not apply at this property.
Decarbonization Value
$6.7M
Incentives.
Net Present Value
$1.97M
Versus -$1.36M for BAU with difference of $3.33M.
To confirm the viability of The Towers adopting energy efficiency measures, the project team constructed several discounted cash flow financial scenarios utilizing Net Present Value (NPV) or the total cash flow of the measures taken over a period of time by assuming a discount rate for the worth of money over a period. For comparison, they constructed a baseline for forecasted equipment replacement compared to the Roadmap measures. A comparison of investment costs are as follows:
Using a 7% discount rate over 20 years, the discounted cash flows resulted in relative net present values (NPVs) of -$1.36 million for the Baseline and +$1.97 million for the planned ECMs, a difference of $3.33 million. Based on the analysis, the cost of planned ECMs is a more viable financial investment.
Notably, the costs of business-as-usual in these scenarios do not capture what New York State prescribes as the Social Cost of Carbon (SCC). The SCC is a metric used by countries, states, and other authorities having jurisdiction (AHJ) to place a cost on climate change impacts. New York State firmly defines the SCC as $125/ton of CO2 emitted. The alternative energy system for The Towers, though capital intensive, has clear economic benefits. This and many other climate change impacts such as point pollution, land degradation, human health, and others, are known as intangible decarbonization benefits.
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
The measures used in our decarbonization strategy have been strategically planned based on priorities, as well as to optimize energy and carbon reduction. The approach is to reduce loads first to allow for reduced and properly sized new systems. This sequence enables implementation of the measures because it allows thermal loads to be reduced as soon as possible, before electrification of heating and cooling with the ground source heat pump (GSHP) system. Most critical to the success of the plan are the early implementation of the distribution system retrofit and installation of the wastewater energy transfer (WET) system for thermal energy recovery.
Due to the critical nature of the decarbonization work, AHC desires an aggressive implementation timeline for the measures. The work, specifically the piping and fan coil unit (FCU) replacement and WET system installation, is slated to occur 2024-2026. Then in 2026-2028 comes the critical steps of envelope improvements, submetering and control upgrades, and geothermal system installation. The geothermal measure will be a critical step for transitioning The Towers away from fossil fuels because the GSHP system will replace the steam supplied from the gas and oil fed central boiler plant for heating, cooling, and domestic hot water (DHW). This measure will allow the chiller, cooling tower, and steam piping to be fully decommissioned, thereby yielding additional operational and maintenance savings. In 2028-2030, installing the solar PV system will allow for further deep energy savings as it will enable The Towers to have a direct source of clean energy and rely less on the main electricity grid, which needs time to transition to clean energy. Lastly, in 2039-2034, electrifying the appliances will be the last component in completely transitioning The Towers away from on-site fossil fuels while also saving energy by installing high efficiency alternatives and providing health benefits to the residents by eliminating gas stoves.
A Rational Approach to Large Building Decarbonization
Tags
Project Highlights
Step 1
Step 1: Examine Current Conditions
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
Lessons from New York’s Empire Building Challenge
This article, published in NESEA’s BuildingEnergy magazine (Vol. 40 No. 1), addresses common “decarbonization blind spots” that impede progress and shares insights gained from the incremental methodology and integrated design process pioneered through NYSERDA’s Empire Building Challenge.
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
Insights from Empire Building Challenge
Large commercial and residential buildings must overcome various hurdles before implementing deep retrofits or capital projects that help achieve building decarbonization. This section addresses technical barriers and questions often faced by building owners and retrofit project developers.
Decentralized Systems and Tenant Equipment
Access to Occupied Spaces.
Lease Concerns.
Regulatory Limitations of Rent Stabilized Apartments.
The building owner is required to provide free heat and hot water.
No mechanism to recover investment in new systems is necessary to achieve decarbonization.
Buildings are capital constrained.
Split Incentives (e.g. tenants pay for energy).
Facade and Windows
Work must be completed at the end of facade/window useful life; very long useful life.
Building codes.
Glazing reduction at odds with aesthetic/marketability concerns.
Difficult installing with occupied spaces.
Reduce Local Law 11 recurring cost via overcladding
Aesthetic concerns
At odds with historic preservation
Capital intensive
Lot line limitations
Technology Limitations
Need higher R-value/inch for thinner wall assembly:
Vacuum insulated panels
Aerogel panels/batts
Zero-GWP blowing agents for closed cell spray foam (nitrogen blowing agent needs to be more widely adopted)
Ventilation
Energy Recovery Ventilation (ERV)
Space constraints
System tie-in point accessibility/feasibility
Rooftop Supply Air (Reznor) Unit Alternatives
Heat pump alternatives to eliminate resistance heat
Combine with ERV
HVAC Load Reduction (HLR) Technology
Vent or capture exhaust gases
Space constraints
System tie-in point accessibility/feasibility
Central vs. Decentralized Ventilation Systems
Direct Outside Air System (DOAS)
Modular perimeter ducted air heat pumps:
Competition for leasable space
Space constraints
Ventilation Points-of-Entry
Aesthetic concerns
Lot line facades/building setbacks
Competition with leasable space
Space constraints
Heat Pump Limitations
Variable Refrigerant Flow (VRF)
Fire and life safety concerns about volume of refrigerant gas located within occupied spaces.
Regulatory risk from new refrigerant policies
PTAC and VTAC
Ducted Supply/Exhaust Air Source Heat Pumps
Domestic Hot Water
Central DHW Systems:
Limited domestic production.
Performance not confirmed by independent third parties.
More demonstration projects needed.
Decentralized DHW Systems
More open-source interconnection between devices/interoperability is needed to achieve energy distribution flexibility and capacity expansion:
Air source that has a manifold connection to interconnect with water source or refrigerant gas distribution.
Interconnectivity/simplified heat exchange between refrigerants/water/air, etc.
Other options and add-ons.
Steam Alternatives and Barriers
Below are high temperature renewable resource alternatives to district steam. These alternatives are limited and face barriers to implementation due to cost, scalability, and other factors.
Deep Bore Geothermal
Renewable Hydrogen
Carbon Capture and Sequestration
Biomethane
Electric Boilers
High-temperature thermal storage
Hight-temperature industrial heat pumps
Waste Heat Capture and Reuse
Fission
Barriers to Electrification and Utility Capacity Limitations
Building Electric Capacity Upgrades
Electric riser capacity
Switchgear expansion
New service/vault expansion/point-of-entry space constraints
Capacity competition with other electrification needs:
Space heat and cooling
DHW
Cooking
Pumps and motors
Local Network Electric Capacity Upgrades
Excess Distribution Facility Charges (EDF)
Contributions in Aid of Construction (CIAC)
Gas Utility Earnings Adjustment Mechanisms (EAM) focused on System Peak Demand Reductions
Partial Electrification concepts achieve deep decarbonization but do not necessarily achieve peak gas demand reductions (debatable)
Total Connected Loads and Peak Demand drive need for capacity upgrades
Demand reduction strategies do not obviate capacity limitations unless the utility accepts the solution as a permanent demand/load reduction strategy.
Battery Storage:
Fire danger
Space constraints
Electricity distribution limitations
Structural loads
Building Automation/BMS/Demand Response:
Cost
Integration limitations; Blackbox software
Microgrid development cost and lack of expertise
On-site Generation:
Space constraints
Gas use; Zero carbon fuels availability is non-existent
Structural loads
Pipe infrastructure
Thermal Storage
Space constrains
Structural loads
Technology limitations:
Vacuum insulated storage tanks
Phase change material (DHW, space heating)
Geothermal (ambient temperature), Deep Bore Geothermal (high temperature) or Shared Loop District Energy Systems provide cooling and heating with lower peak demand than standard electric equipment
Building pipe riser limitations; need additional riser capacity:
Building water loops are typically “top down” – cooling capacity is typically located at rooftop mechanical penthouses; cooling towers at roof. Some exceptions to this rule
Space Constraints
Drilling Difficulty:
Outdoor space constraints for geothermal wells
Difficult permitting
Mud and contaminated soil disposal
Overhead clearance constraints for drilling in basements/garages
Shared Loop/Thermal Utility Limitations:
Requires entity that may operate in public ROWs and across property lines
Utilities are limited by regulations for gas, steam or electric delivery versus shared loop media (ambient temperature water).
Only utility entities can provide very long amortization periods
Utilities are best suited to work amid crowded underground municipal ROWs.
Deep Bore Geothermal Limitations:
Requires test drilling and geological assessment
Seismic risk
Drilling equipment is very large – more akin to oil and gas development equipment
Subsurface land rights and DEC restrictions
Other Energy Efficiency/Conservation Measures with proven/attractive economics (these measures are limited by lack of capital or knowledge)
A baseline assessment is key to understanding current systems and performance, then identifying conditions, requirements or events that will trigger a decarbonization effort. The assessment looks across technical systems, asset strategy and sectoral factors.
Building System Conditions
Asset Conditions
Market Conditions
Step 2
Step 2: Design Resource Efficient Solutions
Effective engineering integrates measures for reducing energy load, recovering wasted heat, and moving towards partial or full electrification. This increases operational efficiencies, optimizes energy peaks, and avoids oversized heating systems, thus alleviating space constraints and minimizing the cost of retrofits to decarbonize the building over time.
Step 3
Step 3: Build the Business Case
Making a business case for strategic decarbonization requires thinking beyond a traditional energy audit approach or simple payback analysis. It assesses business-as-usual costs and risks against the costs and added value of phased decarbonization investments in the long-term.
Decarbonization Costs
Business-as-Usual Costs
Business-as-Usual Risks
Decarbonization Value
Net Present Value
Strategic Decarbonization Action Plan
An emissions decarbonization roadmap helps building owners visualize their future emissions reductions by outlining the CO2 reductions from selected energy conservation measures. This roadmap is designed with a phased approach, considering a 20- or 30-year timeline, and incorporates the evolving benefits of grid decarbonization, ensuring a comprehensive view of long-term environmental impact.
Project Team
Additional Resources
Tags
These playbooks summarize retrofit strategies that maximize occupant comfort and energy savings through a transition from fuel to electricity- based heating, cooling and hot water systems.
Playbooks are organized by building system— lighting & loads, envelope, ventilation, heating & cooling, and domestic hot water– detailing common existing systems, typical issues, and recommended measures.