Tenant Resources

Decarbonizing New York City Offices: Playbook for Consultants

This playbook provides consultants — such as architects, MEP engineers, and energy specialists — with curated guidance and resources to help prioritize energy efficiency and emissions reduction strategies across various phases of the leasing cycle.. Consultants should reference and revisit the information attributed to each step as office spaces within their project portfolio move through various stages of the leasing cycle.

This resource is part of a series of actionable resources developed for the Decarbonizing New York City Offices project, an initiative dedicated to reducing carbon emissions in leased commercial spaces by facilitating meaningful collaboration between building owners, tenants, brokers, lawyers, designers and others involved in leasing and office utilization decisions. Learn more about the initiative:  www.be-exchange.org/decarbonizing-new-york-city-offices

Source: Building Energy Exchange

Tenant Resources

Decarbonizing New York City Offices: Playbook for Building Owners & Managers

This playbook provides commercial building owners and managers with curated guidance and resources to prioritize energy efficiency and emissions reduction strategies across various phases of the leasing cycle.. Owners should reference and revisit the information attributed to each step as office spaces within their portfolio move through various stages of the leasing cycle.

This resource is part of a series of actionable resources developed for the Decarbonizing New York City Offices project, an initiative dedicated to reducing carbon emissions in leased commercial spaces by facilitating meaningful collaboration between building owners, tenants, brokers, lawyers, designers and others involved in leasing and office utilization decisions. Learn more about the initiative:  www.be-exchange.org/decarbonizing-new-york-city-offices

Source: Building Energy Exchange

Tenant Resources

Decarbonizing New York City Offices: Playbook for Tenants

This playbook provides commercial office tenants with curated guidance and resources to help prioritize energy efficiency and emissions reduction strategies across various phases of the leasing cycle.. Tenants should reference and revisit the information attributed to each step as office spaces within their portfolio move through various stages of the leasing cycle.

This resource is part of a series of actionable resources developed for the Decarbonizing New York City Offices project, an initiative dedicated to reducing carbon emissions in leased commercial spaces by facilitating meaningful collaboration between building owners, tenants, brokers, lawyers, designers and others involved in leasing and office utilization decisions. Learn more about the initiative:  www.be-exchange.org/decarbonizing-new-york-city-offices

Source: Building Energy Exchange

Strategic Decarb 101

Retrofit Playbook for Large Buildings Launch Event

On June 11, 2024, NYSERDA, BE-Ex, RMI, and Urban Land Institute hosted the launch of the Retrofit Playbook for Large Buildings, showcasing replicable approaches for low-carbon retrofits from cohorts of the Empire Building Challenge. Additionally, NYSERDA announced its newest cohort of the Empire Building Challenge (EBC), featuring a number of leading affordable and low-to-medium income housing projects.

Opening Remarks

Michael Reed, Acting Head of Large Buildings, NYSERDA
Joe Chavez, Deputy Director, Resilient & Efficient Buildings, NYC MOCEJ

Presenters

Brett Bridgeland, Principal, Carbon Free Buildings, RMI
EBC Cohort 3 Winners

Moderators

Jennifer Leone, Chief Sustainability Officer, NYC HPD
Joe Chavez, Deputy Director, Resilient & Efficient Buildings, NYC MOCEJ
Samantha Pearce, Vice President of Sustainability, NYS HCR

Read more about the event takeaways in the program brief.

Strategic Decarb 101

The Role of Design Charrettes in Building Decarbonization Planning

As the world grapples with the urgent need to reduce greenhouse gas emissions, the built environment has become a critical focus area to deliver progress. Buildings are significant contributors to global carbon emissions, and transitioning to more sustainable, low-carbon operations is essential for meeting climate goals. Planning for that transition now, through a thoughtful and rational approach, is key to achieving success over time.  

Design charrettes are an important tool project teams can use to support their decarbonization planning work. These collaborative design review workshops bring together diverse stakeholders to develop and refine strategies for reducing carbon emissions from buildings over time.  

What is a Design Charrette?

A design charrette is an intensive, multi-disciplinary workshop aimed at finding and refining solutions to complex problems. The term originated in 19th century Paris and refers to the practice of design students working intensely on their projects until the last minute, when a cart or “charrette” would be wheeled around to collect their final designs. The term has evolved to describe collaborative sessions that bring together developers, designers, domain experts, community members, and an array of other stakeholders to reach mutually beneficial outcomes. In the context of building decarbonization, design charrettes facilitate the rapid development of actionable (and at times substantially more innovative) strategies to reduce emissions from buildings, with alignment among multiple interested parties.  

Why Use Design Charrettes to Achieve Resource Efficient Decarbonization?

  1. Collaborative Problem-Solving: Building decarbonization requires input from a wide range of experts, including architects, engineers, asset managers, environmental scientists, and community leaders. A design charrette brings these diverse voices together in a collaborative setting, ensuring that all perspectives are considered. 
  2. Intensive Focus: The concentrated nature of a charrette allows participants to delve deeply into the problem at hand. Over several hours (or days), stakeholders can explore various scenarios, analyze data, and develop detailed plans that might otherwise take months to create using traditional methods. 
  3. Iterative Process: Charrettes are designed to be iterative, with multiple rounds of feedback and refinement as needed. This approach ensures that the final outcomes are well-vetted and robust, with broad support from all stakeholders. 
  4. Creative Solutions: The collaborative and open nature of charrettes fosters creativity and challenges deeply held assumptions about how to approach a problem by the charrette participants.  Participants are encouraged to think outside the box and develop innovative solutions that might not emerge in a more conventional planning process. 
  5.  Achieving Resource Efficient Decarbonization (RED): Charrettes enable stakeholders to develop highly strategic plans to transition a building away from on-site fossil fuel over time in a way that does not diminish high-performance operations, contains operating and capital expenses, and maintains a complex urban systems perspective including considerations relating to infrastructure and natural resources.

The Design Charrette Process

Charrettes are conducted just after a decarbonization concept plan is created and initial decarbonization measures are framed. A successful charrette requires being prepared to discuss the existing conditions of the building in detail, various decarbonization measures and approaches considered, and an understanding of the social and market conditions influencing the building owner’s decision making. The charrette process includes: 

  1. Preparation: Successful charrettes require careful preparation. This includes identifying key stakeholders and inviting them to join, gathering relevant data, and setting clear objectives for the workshop.  
  2. Workshop Session: During the charrette, the project team presents their building existing conditions and decarbonization approaches and engage in brainstorming, design review, and business discussions with a team of technical experts and industry leaders.
  3. Iteration and Feedback: Ideas generated during the sessions can be reviewed and refined through multiple rounds of feedback and additional charrettes as needed. This iterative process helps to improve and perfect the proposed solutions. 
  4. Implementation and Follow-Up: The final step is to translate the charrette outcomes into a formal strategic decarbonization plan and business case that leads to real-world actions. This may involve further planning, securing funding, and ongoing community engagement. 

Design charrettes are a powerful tool for addressing complex decarbonization challenges, especially in the planning and early implementation phase. With collaboration, creativity, and iteration, charrettes enable the development of effective and sustainable strategies to reduce carbon emissions from buildings.

Want to review your decarbonization plan with our team of experts?

Request a design charrette.

Strategic Decarb 101

Empire Building Challenge Overview

Through the Empire Building Challenge (EBC), NYSERDA is supporting forward-thinking leaders in the real estate and engineering industries, in the quest to find workable and scalable, cost-effective approaches to retrofit tall, complex, and hard-to-decarbonize buildings in New York. Partners and projects funded through the flagship $50 million demonstration program are working to reach a zero-emissions future. The groundbreaking work of these leaders is presented in this Playbook, which showcases a novel, compelling framework that can unlock opportunities for decarbonizing most buildings in a cost-effective manner, over time. We call the framework Resource Efficient Decarbonization.  

To date, NYSERDA has partnered with 27 commercial and multifamily real estate owners who have committed to eliminate carbon emissions from some of New York State’s tallest and most iconic buildings. These partners have pledged to decarbonize over 128 million square feet of space, and more than 3,500 units of affordable housing. The scale of these partner commitments and the early success of EBC demonstration projects sends a clear signal that New York’s real estate industry is ready to accelerate investment in the buildings of the future.  

Beyond these commitments, EBC partners collectively control and manage over 400 million square feet of real estate in New York.  This amounts to over 20% of commercial office space in New York City, and more than 200,000 housing units throughout the State, representing a potential for impact much greater than the sum of its parts.  The lessons learned during the planning, design, and implementation of EBC projects pave the way for the most viable solutions to gain traction and scale throughout the State, reinforcing progress toward the Climate Leadership and Community Protection Act’s goal to reduce greenhouse gas emissions 85% by 2050. 

Discover the Empire Building Challenge

Visit NYSERDA EBC Site(opens in new window) Explore Pitch Deck(opens in new window)
View Launch Webinar(opens in new window)

Read About Real-World Impact

Understand the real-world implications and successes of the Empire Building Challenge through this in-depth article, “How to get New York City’s biggest buildings to zero carbon,” by Canary Media. This piece highlights the practical steps and measures being taken to reduce carbon footprints across New York’s architectural landscape, showcasing the challenge as a beacon for carbon-neutral aspirations worldwide.

Source: NYSERDA, Building Energy Exchange, Canary Media

Assessment Tools

Strategic Decarbonization Assessment (SDA) Tool

Insights from the Empire Building Challenge

The Strategic Decarbonization Assessment calculator is a valuable tool that allows building owners and retrofit teams to align their asset decarbonization strategies with their capital investment strategies. The SDA is designed to integrate assessment of multiple requirements including optimizing net present value, replacing equipment close to end of life, avoiding compliance fees, and coordinating electrification of fossil fuel equipment with future electric grid decarbonization. 

The SDA is a long-term financial planning tool for building owners to manage carbon emissions and energy use. During the Empire Building Challenge program, the tool guided participants in refining their decarbonization scenarios and identifying the most cost-effective decarbonization plans. Several teams were able to show positive net present value for their decarbonization plans compared to business as usual. This process can benefit many buildings and property owners in New York in better quantifying, representing, and identifying optimal decarbonization scenarios.

The SDA tool was built by Arup and Ember Strategies. It was previously developed for the San Francisco Department of the Environment and modified for NYSERDA use in the Empire Building Challenge.

Download SDA Overview

User Advisory

The SDA tool was created as the one-stop shop for the development and modeling of the business case that supports initiating a decarbonization roadmap. The SDA tool below was developed based on ASHRAE Standard 211 normative forms with a variety of users and use cases across the United States in mind. 

The tables and charts on the “Summary (Print Me)” tab outline assumptions, costs, savings, decarbonization trajectory and alignment with NYC’s LL97 requirements. The bar charts and trajectories on this tab should be a graphical representation of the narrative explanation of your plan and business case from the “Narrative & Measures” and “Alternatives” tabs. The “Carbon emissions per year, before offsets” and the “Relative NPV of Alternatives” charts on the “Summary (Print Me)” tab should illustrate the sequencing and timing of equipment replacement, relationships between ECMs and savings/costs.

SDA Inputs Table

The table below describes inputs of the SDA tool and directions associated with each.

On the “Building info and assumptions” tab, users input basic information about the building: floor areas, space types, fuel types and consumption (bill) data. The “Building info and assumptions” tab enables users to communicate building information in a highly customized way at a very granular level. Default values do not need to be changed unless the business case is materially impacted by these estimates (i.e.  maintenance costs are reducing in addition to energy costs). Most of these assumptions are found in the “Real Estate Characteristics” drop down menu. Use the drop-down menu to change the default escalations rates for general costs and specific fuel costs over time. Sensitivity analyses that explore a variety of future rate scenarios are encouraged to show that you have considered the sensitivity/fragility/resilience of your plan in a variety of futures. 

The “Regulatory Assumptions” drop down on this tab includes NYSERDA default values for fuel specific emissions factors stipulated by LL97. This section also automatically calculates the building’s LL97 emissions limits for the 2024-2029 and 2030-2034 time periods using building typology and GSF inputs on the same tab. Please note: As of 2024, the SDA tool has not been updated to reflect any recent changes to LL97 building classes and missions factors.

On the “Equipment Inventory” tab, users will input major energy using equipment. All the fossil fuel equipment and at least 80% of total energy using equipment should be inventoried and reported on this tab. Very similar or identical equipment can be grouped into one row (e.g. multiple AHUs of generally the same size and age). The date of installation is required as it determines the equipment life and is used to define the Business As Usual (BAU) trajectory – existing equipment is projected to continue functioning until it reaches End of Useful Life and is replaced, like for like, at that time. User-input costs for the like for like replacement are also required inputs to complete the BAU trajectory. Please note, the estimated replacement cost and year installed are required inputs for the SDA graphics. Replacement costs for decarbonization measures and BAU equipment replacement need not be overly precise – these cost numbers should be realistic to ensure ROI and NPV calculations are sufficient for comparative purposes.

NPV and savings calculations in the SDA are significantly influenced by major energy using equipment. To streamline SDA development and simplify analysis, project teams should focus on major equipment and group minor equipment together by age, if feasible. If you are not using the landlord/tenant cost/benefit breakout, keep all equipment in column I (Tenants Own/Operate) marked “No”. This tab also enables a simple summer/winter peak/off peak calculator for demand ECMs, but using this feature is optional and is not a replacement for a full 8760 hour model. 

The “Percent energy/carbon by equipment RUL” graphics to the right (cell AY) should populate as expected if everything is input correctly. This visual is often used in business case narratives, but does not appear on the Summary tab.

On the “Narrative & Measures” tab, users narratively define their alternatives and input all the ECMs (costs and energy/carbon impacts) that will be assigned to years on the “Alternatives” tab. The SDA automatically generates two BAU cases: one in which LL97 compliance is not sought and fines are applied, and one in which LL97 compliance is achieved through carbon offsets alone.

Note the measure life column is a critical input as it determines how long the measure’s savings will persist – if the measure ends without replacement, the corresponding uptick in energy/carbon on that year will show in the trajectory graphs. 

Some potential users may be generating detailed energy models and bringing the outputs from those models into the SDA. These users may streamline ECMs to minimize data entry and rely on the narrative explanation of the measures. The simplest ECM list in this case may be “Year 1 ECMs”, “Year 2 ECMs”, etc. with corresponding costs and benefits; but be advised that users must explain their measures very clearly where they have aggregated costs and benefits.

On the “Alternatives” tab, users schedule ECMs and review the bar charts and trajectories between those Alternatives. The charts on this tab should illustrate the business case consistent with the narrative section. As stated before, the landlord vs. tenant breakdown for ECMs is not required (column H of Alternatives) and the subsequent charts can be disregarded if not used. Note the Holding period and Analysis periods can be varied independently, but most EBC users keep both set for 20 years.

The “Total Relative NPV Compared to Baseline – Varying Time Horizons” chart (cell AZ) is very commonly used in internal business cases to evaluate cost-effectiveness of the Alternatives over different time horizons, but it is not included on the Summary tab.

Most of the calculations happen on the “Operating Statements” tab, where an annual operating statement is created for each alternative/baseline for the 20-year analysis period. Users can review these statements as needed; however, it is not recommended to edit this portion of the tool directly. This is typically done when troubleshooting a trajectory chart that does not match user expectations.

Download

The SDA tool is available for download below, including a blank version as well as a version with data from a sample building.

Blank SDA Sample Building SDA

Instructional Videos

Four instructional videos detailing each step of the SDA process are linked below:

Part 1: Introduction & Inputs

Part 2: Equipment Inventory

Part 3: Narrative & Measures

Part 4: Scenarios & Results

Engineering Solutions

Building Discovery

Insights from Empire Building Challenge 

The discovery phase is intended to provide an initial understanding of the building’s existing conditions, current challenges, and potential opportunities. The data and insights gathered during this phase will be used to create the building’s calibrated energy model.  Key activities in this workstream include: 

  • Collecting and reviewing relevant building information 
  • Observing building operations under different conditions 
  • Testing subsystems and their interactions 
  • Creating the Business-as-Usual (BAU) base case 

This workstream is critical because it grounds the project team in the reality of the building’s current performance. It also helps build a jointly owned process for uncovering early energy or carbon reduction opportunities that can increase trust and enthusiasm to identify more complex measures as the project progresses.

At the end of this phase, the team should have a clear understanding of the building energy systems, its historical energy and carbon profile, the potential impact of local laws or other building requirements, opportunities for additional metering, and preliminary energy and carbon reduction opportunities. 

This workstream provides vital information on current challenges, near and longer-term carbon reduction opportunities, and the accuracy of the energy model. It also creates early wins that build momentum and trust. Getting the most out of this work requires trust-based collaboration between multiple stakeholders, including facilities managers, operations staff, the energy modeler, external contractors, and design engineers. Engaging with tenants to get insight into what drives their loads can also add value and inform this process. Data and insights on the building’s existing condition typically arise from four sources: 

  • Design documents 
  • Data from metered systems 
  • Direct observation and testing 
  • Building operations team feedback 

Each source is important, but it is the integration across these four categories of data that leads to deep operational insights and identification of major areas of opportunity. 

Inputs
  • Cross-disciplinary, trust-based collaboration
  • Tenant insights
Activities

Gather Information:
In this phase, project teams should work with the building management and operations teams to collect key information using the sample checklist shown below.

Survey the Building:
Understanding a building’s existing conditions requires time on-site. Design drawings, operator interviews, and utility data all provide valuable insight, but do not capture the nuances of how the building runs day-in and day-out. Project teams should plan to conduct an initial site walkthrough to confirm high-level information about the building equipment, systems, and operations strategies shortly after project kickoff. As the study unfolds, additional site visits to verify information, gain additional clarity on certain conditions, or evaluate the feasibility of implementing ECMs will be necessary. The more time the project team spends in the building, the easier it will be to capture the building’s existing conditions in the building energy model and to develop ECMs that are feasible. When completing the building walkthrough, the project team should evaluate the following: 

  • Space temperatures: does the space temperature feel too low or too high?
  • Infiltration conditions: are there noticeable drafts within the space?  
  • Pipe trim and valving: is there proper instrumentation within the system?  
  • Unoccupied space conditions: is equipment running when it should be off?  
  • Central plant operations: is equipment running more often than it needs to be? 
  • Piping/duct conditions: are there noticeable leaks or inefficiencies within the distribution?  
  • Multiple controls for different equipment within a single space or physically grouped thermostats: is it possible that the controls are causing conflicting operation?  

Deploy Additional Metering (if required):
Collecting documentation and surveying the building will highlight gaps in data or information needed to build a calibrated energy model. To fill these gaps, the project team may elect to deploy additional metering to capture the missing information. Metering ultimately reduces speculation and provides real-time insight into the building’s operations. Project teams should execute the following steps when developing a metering strategy: 

  • Identify and create an inventory of existing meters, submeters and instrumentation. 
  • Verify the accuracy of existing meters and ensure they are properly connected and integrated in the building management system (BMS). 
  • Gain direct access to view the BMS data. Ideally, the team will have viewing access to real-time building operations during the entire duration of the project. 
  • Identify areas where additional meters will be required. 
  • Develop a deployment program for additional metering needs including preferred vendors, meter types, meter quantities, locations for placement, and an installation schedule. 

Observe and Test Systems:
Building system assessments and functional tests are great ways to capture operating parameters, evaluate performance, and identify issues that can be resolved with retro-commissioning. Project teams should conduct some or all the following building tests to further inform the study:

Test/AssessmentGoalsReference/Procedure
Building envelope performance and infiltrationUnderstand the conduction losses/gains through the envelope. This will inform potential envelope opportunities and the baseline energy model.Refer to ASTM E1186 – 17 for standard practices for air leakage site detection in building envelopes and air barrier systems. 
Tenant electric load disaggregation, i.e. plug loads, lighting, ITIdentify high consumption loads within tenant spaces to target critical loads and opportunities.Select one or two tenants and install submeters on their floor (can be temporary), separating out loads by lighting, IT, plug loads. Analyze consumption and data trends to develop energy conservation measures.
Setpoints and setbacks in all spaces (tenant areas, common area, IT rooms, MEP) during winter and summer seasonsDetermine the most energy efficient setpoint/setback while maintaining a comfortable space. Evaluate what is possible within each space. Evaluate the ability of the system to recover from the setback without causing excessive utility demand.Test potential setpoint and setback temperatures within each space type to determine the optimal energy efficient condition.
Airside controlsVerify that airside controls are configured to optimize energy and indoor air quality.  Identify easy-to-implement and inexpensive controls ECMs.Test procedures will vary based upon the type of airside equipment in use; however, the following assessments are applicable to many airside configurations and can act as a starting point: 
Step 1: Verify that static pressure setpoint controls are correct per the sequence of operations or current facility requirements.  
Step 2: Verify that supply air temperature resets are programmed and operating within the correct range.  
Step 3: Verify that terminal box minimum and maximum setpoint are appropriately set per the latest balancing report. 
Step 5: Confirm if outdoor airflow stations are installed, and if so, verify that the appropriate amount of outside air is being delivered per the design documents or current facility requirements.  
Step 6: Verify if a demand control ventilation (DCV) program is in place. If so, confirm that outside airflows are reduced as occupancy is reduced. 
Step 7: Verify that turndown controls are appropriately reducing equipment temperatures or flows in low load conditions.
Waterside controlsVerify that waterside controls are configured to optimize energy and are load-dependent.  

Identify easy-to-implement and inexpensive controls ECMs.

Test procedures will vary based upon the type of waterside equipment in use; however, the following assessments are applicable to many waterside configurations and can act as a starting point:  
Step 1: Verify that static pressure setpoint controls are correct per the sequence of operations or current facility requirements.  
Step 2: Verify that supply or return temperature resets are programmed and operating within the correct range.  
Step 3: Confirm if an economizer mode is available, and if so, verify that the system appropriately enables this mode in certain weather conditions.  
Step 4: Verify that turndown controls are appropriately reducing equipment temperatures or flows in low load conditions.
BMS anomalies and faultsIdentify discrepancies in what the BMS is outputting on the front-end versus the actual observed conditions. Identify easy-to-implement and inexpensive controls ECMs.For each tested system, compare the BMS outputs to the actual measured data or observed condition. Identify the root cause of the discrepancy and resolve.
Outputs
  • An additional metering strategy with a timeline for installation and a plan for measurement & verification of new meters.  
  • A preliminary list of operational adjustments and retro-commissioning issues based upon building surveys and building system assessment/tests. 
  • A plan for implementing operational opportunities like setbacks and setpoint adjustments.

Lessons Learned and Key Considerations

Business operations are as important as facility operations:
Energy studies tend to focus only on the architectural and MEP operations within the building. Project teams spend a lot of time understanding how equipment and systems operate and perform, but often don’t spend enough time considering the building’s existing lease turnover schedules, existing capital plans, or hold strategy. These business considerations are critical to understanding the types of decarbonization strategies that building ownership are likely to invest in.

2. Build the “Business-as-Usual” Base Case

Building the business-as-usual (BAU) base case occurs between the Discovery and Energy Modeling phases and includes an analysis of the building’s utility data to gain insight into how the building uses energy at a high level and how that consumption translates to carbon emissions. From this analysis, the project team will be able to evaluate the building’s exposure to mandates such as Local Law 97. 

Inputs

Building the BAU base case requires obtaining one full year of utility data, at a minimum.

Activities

Utility Analysis (Baseline Condition):
As the project team learns the building, one full year of utility data (at a minimum) will be collected. The project team should visualize this data monthly to further develop its understanding of how and when the building uses energy. The following list of questions can be used to guide the analysis: 

  • What fuel types are consumed by the building? 
  • When are fuel types used the most or the least and why? 
  • Are there unexpected usage peaks for certain fuel types? 
  • What is the building Energy Use Intensity (EUI) and how does it compare to peer buildings? 
  • What is the building Energy Cost Intensity (ECI) and how does it compare to buildings? 
  • What service class is the building in and what is the tariff structure for that service class? 
  • How does demand correlate with cost?  

Based on the results of this activity, the project team will begin to form hypotheses about how building systems interact, which end uses are the most energy intensive, and where deeper energy and carbon reduction strategies may be pursued.  

Building Performance Standard Impact Analysis:
Depending on the jurisdiction in which the deep energy retrofit study is taking place, it may be beneficial for the project team to evaluate the building’s current performance against mandates or building performance standards (BPS) that are in effect. In New York City, for example, Local Law 97 is a BPS that many building owners are focused on. Other jurisdictions may have energy use intensity (EUI) targets or other metrics for performance. The outcome of the impact analysis may help to inform the overall decarbonization approach for the building. Project teams should execute the following steps to conduct a BPS impact analysis: 

  • Step 1: Aggregate annual utility data by fuel type. 
  • Step 2: Convert raw data into the appropriate BPS metric. In the example of LL97, annual fuel consumption is converted to annual carbon emissions with carbon coefficients that are published in the law.  
  • Step 3: Compare the building’s annual performance against the BPS performance criteria. 
  • Step 4: Consider how the building’s performance might change over time as the electric grid decarbonizes. In the example of LL97, a building’s carbon emissions associated with electricity consumption will naturally decline over time as the grid decarbonizes. 
  • Step 5: Calculate impacts of compliance or non-compliance with the BPS. For LL97, building emissions in excess of the allowable carbon limit results in an annual financial penalty.   
  • Step 6: Share results with the building management and ownership teams to further inform that building decarbonization approach.

During the energy retrofit process, the team will discover simple ways to reduce energy consumption that can be implemented almost immediately. With real-time data, the BMS allows the team to analyze how effective the changes to the system are.

Outputs

Deliverables for this task include the following: 

  • Energy, carbon & cost end use breakdowns (monthly) 
  • Demand and tariff structure analysis 
  • Mandate or Building Performance Standard impact analysis

Lessons Learned and Key Considerations

3. Identify Preliminary ECMs and Carbon Reduction Strategies

Inputs

Based on the work completed during the “Learn the Building” and “Build the BAU Base Case” tasks, the project team should already have a sense of the ECMs that are a good fit for the building. The project team should review the outcomes of the work done up to this point and develop a list of preliminary strategies so the team can level set on an approach as the project enters the Energy & Carbon Modeling phase.  

Activities

• Develop a Tiered List of ECMs:
Through the document collection and building system assessments, the project team likely identified low or no-cost operational items that can be implemented immediately. These simple items should be grouped and presented as Tier 1 measures. Deeper measures that require more upfront capital and/or have a longer lead time should be separated out into Tier 2 items. Tiers can be based upon cost or timeframe for implementation. Categorizing measures in this way will support building owner decision-making. 

• Conduct a Qualitative Assessment of ECMs:
Once the measures are appropriately categorized into tiers, the project team should generate a qualitative assessment of each measure, based on metrics that are important to the building management team. For example, one building team may identify disruption to tenants as their primary go/no-go metric when deciding which strategies deserve deeper analysis. Metrics will vary from project to project. 

• Present and Solicit Feedback:
Present the tiered list of ECMs, along with the qualitative assessment, and solicit feedback from the building management team. Eliminate ideas that don’t meet the team’s decarbonization approach and welcome new items that the building team may want to pursue that were not originally considered. This process will bolster team engagement and ensure that time spent in the energy model is dedicated to measures that will be considered seriously by the building team for implementation.

Outputs

The output of this task will be a finalized list of energy reduction strategies to study the next phase: the Energy & Carbon Modeling Phase.

Lessons Learned and Key Considerations

Tenant Resources

ULI Tenant Energy Optimization Program

Urban Land Institute’s (ULI) Tenant Energy Optimization Program demonstrates how energy efficiency can be integrated into tenant space design and construction to deliver financial benefits through energy conservation. The program is based around a ten-step process that guides building owners through each phase of an energy optimization project, from pre-lease through post-occupancy. This ten-step process was tested, refined, and documented in ten pilot project case studies, which detail the experiences and lessons learned through the tenant energy optimization process. To further support adoption of the tenant energy optimization process, ULI has produced countless tools and resources that can be utilized to replicate successful projects. 

Source: ULI